Jump to content

MetOp Second Generation weather satellite pair show off


Recommended Posts

Two MetOp-SG satellites on show

Having satellites in different types of orbit is essential to delivering data to forecast the weather accurately. With the first Meteosat Third Generation Imager satellite safely in geostationary orbit since December 2022, it’s also time to focus on its polar-orbiting cousin, the MetOp Second Generation mission. And now, for the first time, two MetOp Second Generation satellites have been brought together to stand side-by-side for testing.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two robotic arms wrapped in gold material sitting on top of a black and silver box.Naval Research Laboratory NASA and the Defense Advanced Research Projects Agency (DARPA) have signed an interagency agreement to collaborate on a satellite servicing demonstration in geosynchronous Earth orbit, where hundreds of satellites provide communications, meteorological, national security, and other vital functions. 
      Under this agreement, NASA will provide subject matter expertise to DARPA’s Robotic Servicing of Geosynchronous Satellites (RSGS) program to help complete the technology development, integration, testing, and demonstration. The RSGS servicing spacecraft will advance in-orbit satellite inspection, repair, and upgrade capabilities. 
      NASA is excited to support our long-term partner and advance important technologies poised to benefit commercial, civil, and national objectives. Together, we will make meaningful, long-lasting contributions to the nation’s in-space servicing, assembly, and manufacturing (ISAM) capabilities.
      Pam Melroy
      NASA Deputy Administrator
      NASA will use expertise from the agency’s On-orbit Servicing, Assembly, and Manufacturing 1 project and other relevant efforts to provide hands-on support to RSGS in the areas of space robotics, systems engineering, spacecraft subsystems, integration and testing, operator training, and spaceflight operations. NASA’s involvement in RSGS will continue advancing the agency’s understanding of and experience with complex ISAM systems.
      DARPA will continue to lead the RSGS program, which has already achieved several important milestones, including the completion of two dexterous robotic arms designed for inspection and service that have been stress-tested for an on-orbit environment and the integration of those arms with their associated electronics, tools, and ancillary hardware to produce the fully integrated robotic payload. 
      Media Contact: Jasmine Hopkins
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Space Tech Topics
      STMD Solicitations and Opportunities
      Robotics
      Technology Transfer & Spinoffs
      Artemis
      Share
      Details
      Last Updated Sep 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      More than 100 scientists will participate in a field campaign involving a research vessel and two aircraft this month to verify the accuracy of data collected by NASA’s new PACE satellite: the Plankton, Aerosol, Cloud, ocean Ecosystem mission. The process of data validation includes researchers comparing PACE data with data collected by similar, Earth-based instruments to ensure the measurements match up. Since the mission’s Feb. 8, 2024 launch, scientists around the world have successfully completed several data validation campaigns; the September deployment — PACE-PAX — is its largest. From sea to sky to orbit, a range of vantage points allow NASA Earth scientists to collect different types of data to better understand our changing planet. Collecting them together, at the same place and the same time, is an important step used to verify the accuracy of satellite data.
      NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite launched in February 2024 and is collecting observations of the ocean and measuring atmospheric particle and cloud properties. This data will help inform scientists and decision makers about the health of Earth’s ocean, land surfaces, and atmosphere and the interactions between them.
      Technicians work to process the NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observatory on a spacecraft dolly in a high bay at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Monday, Dec. 4, 2023. Credit: NASA/Kim Shiflett To make sure the data from PACE’s instruments accurately represent the ocean and the atmosphere, scientists compare (or “validate”) the data collected from orbit with measurements they collect at or near Earth’s surface. The mission’s biggest validation campaign, called PACE Postlaunch Airborne eXperiment (PACE-PAX), began on Sept. 3, 2024, and will last the entire month.
      “If we want to have confidence in the observations from PACE, we need to validate those observations,” said Kirk Knobelspiesse, mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This field campaign is focused on doing just that.”
      Scientists will make measurements both from aircraft and ships. Based out of three locations across California — Marina, Santa Barbara, and NASA’s Armstrong Flight Research Center in Edwards — the campaign includes more than 100 people working in the field and several dozen instruments.
      “This campaign allows us to validate data for both the atmosphere and the ocean, all in one campaign,” said Brian Cairns, deputy mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Institute for Space Studies in New York City.
      On the ocean, ships, including the National Oceanic and Atmospheric Administration (NOAA) research vessel Shearwater, will gather data on ocean biology and the optical properties of the water. Scientists onboard will gather water samples to help define the types of phytoplankton at different locations and their relative abundance, something that PACE’s hyperspectral Ocean Color Instrument measures from orbit.
      Members of the PACE-PAX team – from left to right, Cecile Carlson, Adam Ahern (NOAA), Dennis Hamaker (NPS), Luke Ziemba, and Michael Shook (NASA Langley Research Center) – in front of the Twin Otter aircraft as they prep for the start of the campaign. Credit: Judy Alfter/NASA Overhead, a Twin Otter research aircraft operated by the Naval Postgraduate School in Monterey, California, will collect data on the atmosphere. At altitudes of up to 10,000 feet, the aircraft will sample and measure cloud droplet sizes, aerosol sizes, and the amount of light that those particles scatter and absorb. These are the atmospheric properties that PACE observes with its two polarimeters, SPEXOne and HARP2.
      At a higher altitude — approximately 70,000 feet up — NASA’s ER-2 aircraft will provide a complementary view from above clouds, looking down on the atmosphere and ocean in finer detail than the satellite, but with a narrower view.
      The NASA ER-2 high-altitude aircraft preparing for flight on Jan. 29, 2023. The aircraft is based at NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California.Credit: NASA/Carla Thomas The plane will carry several instruments that are similar to those on PACE, including two prototypes of PACE’s polarimeters, called SPEXAirborne and AirHARP. In addition, two instruments called the Portable Remote Imaging SpectroMeter and Pushbroom Imager for Cloud and Aerosol Research and Development — from NASA’s Jet Propulsion Laboratory in Pasedena, California, and NASA’s Ames Research Center in California’s Silicon Valley, respectively — will measure essentially all the wavelengths of visible light (color). The remote sensing measurements are key for scientists who want to test the methods they use to analyze PACE satellite data.
      Together, the instruments on the ER-2 approximate the data that PACE gathers and complement the in situ measurements from the ocean research vessel and the Twin Otter.
      As the field campaign team gathers data, PACE will be observing the same areas of the ocean surface and atmosphere. Once the campaign is over, scientists will look at the data PACE returned and compare them to the measurements they took from the other three vantage points.
      “Once you launch the satellite, there’s no more tinkering you can do,” said Ivona Cetinic, deputy mission scientist for PACE-PAX and an ocean scientist at NASA Goddard.
      Though the scientists cannot alter the satellite anymore, the algorithms designed to interpret PACE data can be adjusted to make the measurements more accurate. Validation checks from campaigns like PACE-PAX help scientists ensure that PACE will be able to return accurate data about our oceans and atmosphere — critical to better understand our changing planet and its interconnected systems — for years to come.
      “The ocean and atmosphere are such changing environments that it’s really important to validate what we see,” Cetinic said. “Understanding the accuracy of the view from the satellite is important, so we can use the data to answer important questions about climate change.”
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 04, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      5 min read New NASA Satellite To Unravel Mysteries About Clouds, Aerosols
      Article 9 months ago 6 min read NASA Wants to Identify Phytoplankton Species from Space. Here’s Why.
      Article 1 year ago 4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available
      Article 5 months ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In a series of baseline flights beginning on June 24, 2024, the G-IV aircraft flew over the Antelope Valley to analyze aircraft performance. To accommodate a new radar instrument developed by JPL, NASA’s Airborne Science Program has selected the Gulfstream-IV aircraft to be modified and operated by Armstrong Flight Research Center in Edwards, California and will accommodate new instrumentation on board in support of the agency’s science mission directorate. Baseline flights began at NASA Armstrong in June 2024NASA/Carla Thomas In June 2024, a new tail number swept the sky above NASA’s Armstrong Flight Research Center in Edwards, California. Pilots conducted flights of a Gulfstream IV (G-IV) to evaluate its handling characteristics and to familiarize pilots with it before it begins structural modifications. The research plane is joining the center’s fleet serving NASA’s Airborne Science program. 
      The G-IV will carry the Next Generation Airborne Synthetic Aperture Radar (AIRSAR-NG), which sends and receives microwave signals to collect information about Earth’s topographic features and how they change over time. The goal for the team at NASA Armstrong is to modify the G-IV to accommodate three radars simultaneously.
      “The AIRSAR-NG will be composed of three different Synthetic Aperture Radar antennas in one instrument to provide new insight into Earth’s surface more efficiently,” said Yunling Lou, principal investigator for the instrument at NASA’s Jet Propulsion Laboratory in Southern California. “The capabilities of this new instrument will facilitate new techniques, such as three-dimensional imaging, that will be useful for future space-borne missions.”
      With those and other modifications being made, the G-IV will also be able to accommodate an increased load of science instruments, which could enable NASA to support more dynamic airborne science missions. 
      “This aircraft will aid Armstrong in continuing our long history of supporting airborne science for the agency and maintain the expertise in conducting successful science missions for years to come,” said Franzeska Becker, the G-IV project manager at NASA Armstrong.
      Transferred in February from NASA’s Langley Research Center in Hampton, Virginia, the G-IV will undergo additional modifications overseen by NASA Armstrong’s team. Their goal is to enrich the agency’s airborne science program by outfitting the aircraft to function as a more capable and versatile research platform.
      The knowledge and expertise of professionals at NASA centers like Armstrong (G-IV, ER-2, C-20) and Langley (777, G-III) will help enable the agency to produce a well-defined and airworthy platform for science instruments and airborne science missions.
      Learn more about NASA’s Airborne Science program Learn more about NASA’s AirSar project Share
      Details
      Last Updated Aug 29, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center NASA Aircraft Science in the Air Science Mission Directorate Explore More
      2 min read First NASA-Supported Researcher to Fly on Suborbital Rocket
      Article 24 hours ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 1 day ago 6 min read Work Is Under Way on NASA’s Next-Generation Asteroid Hunter
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      2 min read
      Hubble Observes An Oddly Organized Satellite
      NASA, ESA, and E. Skillman (University of Minnesota – Twin Cities; Processing: Gladys Kober (NASA/Catholic University of America) Andromeda III is one of at least 13 dwarf satellite galaxies in orbit around the Andromeda galaxy, or Messier 31, the Milky Way’s closest grand spiral galactic neighbor. Andromeda III is a faint, spheroidal collection of old, reddish stars that appears devoid of new star formation and younger stars. In fact, Andromeda III seems to be only about 3 billion years younger than the majority of globular clusters ― dense knots of stars thought to have been mostly born at the same time, which contain some of the oldest stars known in the universe. 
      Astronomers suspect that dwarf spheroidal galaxies may be leftovers of the kind of cosmic objects that were shredded and melded by gravitational interactions to build the halos of large galaxies. Curiously, studies have found that several of the Andromeda Galaxy’s dwarf galaxies, including Andromeda III, orbit in a flat plane around the galaxy, like the planets in our solar system orbit around the Sun. The alignment is puzzling because models of galaxy formation don’t show dwarf galaxies falling into such orderly formations, but rather moving around the galaxy randomly in all directions. As they slowly lose energy, the dwarf galaxies merge into the larger galaxy.
      The odd alignment could be because many of Andromeda’s dwarf galaxies fell into orbit around it as a single group, or because the dwarf galaxies are scraps left over from the merger of two larger galaxies. Either of these theories, which are being researched via NASA’s James Webb Space Telescope, would complicate theories of galaxy formation but also help guide and refine future models. 
      NASA’s Hubble Space Telescope took this image of Andromeda III as part of an investigation into the star formation and chemical enrichment histories of a sample of M31 dwarf spheroidal galaxies that compared their first episodes of star formation to those of Milky Way satellite galaxies.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 29, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A mirror that was later installed inside the telescope for NASA’s Near-Earth Object Surveyor shows a reflection of principal optical engineer Brian Monacelli during an inspection of the mirror’s surface at the agency’s Jet Propulsion Laboratory on July 17.NASA/JPL-Caltech A technician operates articulating equipment to rotate NEO Surveyor’s aluminum optical bench — part of the spacecraft’s telescope — in a clean room at NASA’s Jet Propulsion Laboratory in Southern California on July 17.NASA/JPL-Caltech The mirrors for NASA’s Near-Earth Object Surveyor space telescope are being installed and aligned, and work on other spacecraft components is accelerating.
      NASA’s new asteroid-hunting spacecraft is taking shape at NASA’s Jet Propulsion Laboratory in Southern California. Called NEO Surveyor (Near-Earth Object Surveyor), this cutting-edge infrared space telescope will seek out the hardest-to-find asteroids and comets that might pose a hazard to our planet. In fact, it is the agency’s first space telescope designed specifically for planetary defense.
      Targeting launch in late 2027, the spacecraft will travel a million miles to a region of gravitational stability — called the L1 Lagrange point — between Earth and the Sun. From there, its large sunshade will block the glare and heat of sunlight, allowing the mission to discover and track near-Earth objects as they approach Earth from the direction of the Sun, which is difficult for other observatories to do. The space telescope also may reveal asteroids called Earth Trojans, which lead and trail our planet’s orbit and are difficult to see from the ground or from Earth orbit.
      NEO Surveyor relies on cutting-edge detectors that observe two bands of infrared light, which is invisible to the human eye. Near-Earth objects, no matter how dark, glow brightly in infrared as the Sun heats them. Because of this, the telescope will be able to find dark asteroids and comets, which don’t reflect much visible light. It also will measure those objects, a challenging task for visible-light telescopes that have a hard time distinguishing between small, highly reflective objects and large, dark ones.
      This artist’s concept depicts NASA’s NEO Surveyor in deep space. The black-paneled angular structure in the belly of the spacecraft is the instrument enclosure that is being built at JPL. The mission’s infrared telescope will be installed inside the enclosure.NASA/JPL-Caltech “NEO Surveyor is optimized to help us to do one specific thing: enable humanity to find the most hazardous asteroids and comets far enough in advance so we can do something about them,” said Amy Mainzer, principal investigator for NEO Surveyor and a professor at the University of California, Los Angeles. “We aim to build a spacecraft that can find, track, and characterize the objects with the greatest chance of hitting Earth. In the process, we will learn a lot about their origins and evolution.”
      Coming Into Focus
      The spacecraft’s only instrument is its telescope. About the size of a washer-and-dryer set, the telescope’s blocky aluminum body, called the optical bench, was built in a JPL clean room. Known as a three-mirror anastigmat telescope, it will rely on curved mirrors to focus light onto its infrared detectors in such a way that minimizes optical aberrations.
      “We have been carefully managing the fabrication of the spacecraft’s telescope mirrors, all of which were received in the JPL clean room by July,” said Brian Monacelli, principal optical engineer at JPL. “Its mirrors were shaped and polished from solid aluminum using a diamond-turning machine. Each exceeds the mission’s performance requirements.”
      Monacelli inspected the mirror surfaces for debris and damage, then JPL’s team of optomechanical technicians and engineers attached the mirrors to the telescope’s optical bench in August. Next, they will measure the telescope’s performance and align its mirrors.
      Complementing the mirror assembly are the telescope’s mercury-cadmium-telluride detectors, which are similar to the detectors used by NASA’s recently retired NEOWISE (short for Near-Earth Object Wide-field Infrared Survey Explorer) mission. An advantage of these detectors is that they don’t necessarily require cryogenic coolers or cryogens to lower their operational temperatures in order to detect infrared wavelengths. Cryocoolers and cryogens can limit the lifespan of a spacecraft. NEO Surveyor will instead keep its cool by using its large sunshade to block sunlight from heating the telescope and by occupying an orbit beyond that of the Moon, minimizing heating from Earth.
      The telescope will eventually be installed inside the spacecraft’s instrument enclosure, which is being assembled in JPL’s historic High Bay 1 clean room where NASA missions such as Voyager, Cassini, and Perseverance were constructed. Fabricated from dark composite material that allows heat to escape, the enclosure will help keep the telescope cool and prevent its own heat from obscuring observations.
      Once it is completed in coming weeks, the enclosure will be tested to make sure it can withstand the rigors of space exploration. Then it will be mounted on the back of the sunshade and atop the electronic systems that will power and control the spacecraft.
      “The entire team has been working hard for a long time to get to this point, and we are excited to see the hardware coming together with contributions from our institutional and industrial collaborators from across the country,” said Tom Hoffman, NEO Surveyor’s project manager at JPL. “From the panels and cables for the instrument enclosure to the detectors and mirrors for the telescope — as well as components to build the spacecraft — hardware is being fabricated, delivered, and assembled to build this incredible observatory.”
      Assembly of NEO Surveyor can be viewed 24 hours a day, seven days a week, via JPL’s live cam.
      More About NEO Surveyor
      The NEO Surveyor mission marks a major step for NASA toward reaching its U.S. Congress-mandated goal to discover and characterize at least 90% of the near-Earth objects more than 460 feet (140 meters) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      The mission is tasked by NASA’s Planetary Science Division within the Science Mission Directorate; program oversight is provided by the Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center provides program management for NEO Surveyor.
      The project is being developed by JPL and is led by principal investigator Amy Mainzer at UCLA. Established aerospace and engineering companies have been contracted to build the spacecraft and its instrumentation, including BAE Systems, Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder will support operations, and IPAC-Caltech in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA.
      More information about NEO Surveyor is available at:
      https://science.nasa.gov/mission/neo-surveyor
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-114
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) Planetary Defense Planetary Defense Coordination Office Explore More
      5 min read NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays
      Article 23 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
      Article 7 days ago 5 min read Danish Instrument Helps NASA’s Juno Spacecraft See Radiation
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...