Jump to content

Trailblazing New Earth Satellite Put to Test in Preparation for Launch


Recommended Posts

  • Publishers
Posted
1-pia26114-nisar-tvac-feat.png?w=1665
The NISAR satellite enters the thermal vacuum chamber at an ISRO facility in Bengaluru on Oct. 19. It emerged three weeks later having met all requirements of its performance under extreme temperatures and space-like vacuum.
ISRO

During three weeks in a thermal vacuum chamber in Bengaluru, India, the joint NASA-ISRO satellite demonstrated its hardiness in a harsh, space-like environment.

NISAR, the trailblazing Earth-observing radar satellite being developed by the United States and Indian space agencies, passed a major milestone on Nov. 13, emerging from a 21-day test aimed at evaluating its ability to function in the extreme temperatures and the vacuum of space.

Short for NASA-ISRO Synthetic Aperture Radar, NISAR is the first space hardware collaboration between NASA and the Indian Space Research Organisation, or ISRO, on an Earth-observing mission. Scheduled to launch in early 2024, the satellite will scan nearly all the planet’s land and ice twice every 12 days, monitoring the motion of those surfaces down to fractions of an inch. It will be able to observe movements from earthquakes, landslides, and volcanic activity and track dynamic changes in forests, wetlands, and agricultural lands.

The thermal vacuum test occurred at ISRO’s Satellite Integration and Test Establishment in the southern Indian city of Bengaluru. It’s one of a battery of tests the satellite will face leading to launch. Other tests will ensure it can withstand the shaking, vibration, and jostling that it will encounter during launch.

e1-pia26115-nisar-catf.jpg?w=1600
The NISAR satellite stayed in this ISRO antenna testing facility for 20 days in September as engineers evaluated the performance of its L- and S-band radar antennas. The foam spikes lining the walls, floor, and ceiling prevent radio waves from bouncing around the room and interfering with measurement.
ISRO

NISAR, partially covered in gold-hued thermal blanketing, entered the vacuum chamber on Oct. 19. Over the following week, engineers and technicians lowered the pressure to an infinitesimal fraction of the normal pressure at sea level. They also subjected the satellite to an 80-hour “cold soak” at 14 degrees Fahrenheit (minus 10 degrees Celsius), followed by an equally lengthy “hot soak” at up to 122 F (50 C). This simulates the temperature swings the spacecraft will experience as it is exposed to sunlight and darkness in orbit.

ISRO and JPL teams worked around the clock during the three-week period, testing the performance of the satellite’s thermal systems and its two primary science instrument systems – the L-band and S-band radars – under the most extreme temperature conditions they will experience in space.

This latest round of testing followed 20 days of testing in September in which engineers used ISRO’s compact antenna test facility to evaluate whether the radio signals from the two radar systems’ antennas passed requirements. Blue foam spikes lining the facility’s walls, floor, and ceiling prevent radio waves from bouncing around the room and interfering with measurement.

With thermal vacuum and compact antenna tests successfully done, NISAR will soon be fitted with its solar panels and its nearly 40-foot (12-meter) radar antenna reflector, which resembles a snare drum and will unfold in space at the end of a 30-foot (9-meter) boom extending from the spacecraft.

e2-nisar-artist-rendition.png?w=2048
After it launches in early 2024, NISAR will scan nearly all of the planet’s land and ice twice every 12 days. In orbit, the satellite will extend its solar panels and nearly 40-foot (12-meter) radar antenna reflector, which resembles a snare drum and will unfold at the end of a 30-foot (9-meter) boom extending from the spacecraft.
NASA-JPL/Caltech

The satellite will undergo additional tests before being packed up and transported about 220 miles (350 kilometers) eastward to Satish Dhawan Space Centre, where it will be mounted atop ISRO’s Geosynchronous Satellite Launch Vehicle Mark II rocket and sent into low Earth orbit.

More About the Mission

NISAR is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. U R Rao Satellite Centre (URSC) in Bengaluru, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. ISRO’s Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.

To learn more about NISAR, visit:

https://nisar.jpl.nasa.gov/

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2023-167

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Space Launch Delta 45 continued to “set the pace for space” as the world’s busiest spaceport in 2024. The SLD 45 team enabled 93 launches from the Eastern Range in 2024.

      View the full article
    • By USH
      What are the chances of four iconic landmarks being struck by lightning on the same day?  

      On December 31, 2024, an extraordinary series of lightning strikes hit four major landmarks: the U.S. Capitol Building and the Washington Monument in Washington, D.C., along with the Empire State Building and One World Trade Center in New York City. 

      The lightning strikes occurred during intense rainstorms along the East Coast, coinciding with New Year's Eve celebrations. The rare phenomenon quickly ignited a flurry of speculation on social media, with many users interpreting the event as symbolic. Some called it a potential omen, asking: "Is this a sign? What could it mean?" View the full article
    • By NASA
      Learn Home Astronomy Activation… STEM Engagement at NASA Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Astronomy Activation Ambassadors: A New Era
      The NASA Science Activation Program’s Astronomy Activation Ambassadors (AAA) project aims to measurably enhance student Science, Technology, Engineering, and Mathematics (STEM) engagement via middle school, high school, and community college science teacher professional development.
      In 2024, AAA transitioned its focus to the development of an Astronomy Academy with varying levels of extent and intensity available to more than 300 teachers per year. Participants draw on NASA resources and Subject Matter Experts (SME) to enhance their teaching and help share their excitement about astronomy with their students. The three strands that comprise the Astronomy Academy are:
      webinars regarding NASA astrophysics and planetary science content and facilities, curriculum workshops enabling classroom use of an electromagnetic spectrum and multi-wavelength astronomy (EMS/MWA) curriculum, and STEM immersion experiences including guided visits to working observatories. The first two of the AAA program’s new type of STEM immersion experiences took place in June and September, 2024. During the weekend of June 22-23, 19 teachers gathered in San Jose, California for a full agenda, including:
      NASA SME presentations regarding planetary protection and exoplanet detection, a journey to the University of California’s Lick Observatory on nearby Mt. Hamilton for an in-depth guided tour of the observatory’s astronomy research facilities, which included engagement with the astronomers using the 3-meter Shane telescope, and a 4-hour hands-on EMS/MWA curriculum teaching workshop. A similar STEM immersion sequence was offered September 14-15 to 23 AAA teachers who attended a curriculum teaching workshop, learned about current infrared astronomy research from NASA Jet Propulsion Laboratory scientists, and received guided visits to the Keck Observatory’s remote observing facility on the Caltech campus and the Mt. Wilson Observatory, including a half-night’s reserved use of the historic Mt. Wilson 60-inch telescope. The teachers were invited to submit a list of objects to be observed with the Mt. Wilson telescope and viewed a wonderful array of star clusters, colorful double stars, and galaxies, with a grand finale view of Saturn and its rings.
      Teacher participant, Domina Stamas (Westlake Charter School, Sacramento, California), had this to say: “My students and I are already benefiting greatly from the combination of NASA resources, science content, and curricular materials we have received from the AAA project. The evening at Lick Observatory talking with the astronomers who were using the research telescopes watching the laser guide star setup in action was a rich experience. I can convey to my students how scientists actually practice their craft.”
      The Astronomy Activation Ambassador project’s efforts to improve student STEM learning and engagement via science teacher professional development are detailed at: https://www.seti.org/aaa
      Educator enrollment is still open via the participant registration form:
      https://forms.gle/G34vCzz63ko5RRrM8
      The AAA project, led by the SETI Institute, is supported by NASA under cooperative agreement award number NNX16AC51A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      June 2024 teacher participants in front of the Lick Observatory’s historic 36-inch refracting telescope. SETI Institute/C. Clark Share








      Details
      Last Updated Dec 31, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
      Astronomy Astrophysics Grades 9-12 for Educators Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation STEM Engagement at NASA Explore More
      5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster 
      NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.


      Article


      2 weeks ago
      2 min read Hubble Spies a Cosmic Eye


      Article


      2 weeks ago
      7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Peering through the window of the SpaceX Dragon Endeavour spacecraft, NASA astronaut Matthew Dominick captured this image on Oct. 7, 2024 of the SpaceX Dragon Freedom spacecraft as vivid green and pink aurora swirled through Earth’s atmosphere while the International Space Station soared 273 miles above the Indian Ocean.
      Visit Dominick’s photography on station to experience the wonders of space through his eyes, enriched by his remarkable journey of orbiting the Earth 3,760 times.
      To see a short-term forecast of the location and intensity of the next aurora check this link: Aurora – 30 Minute Forecast and also NASA’s Guide to Finding and Photographing Auroras.
      Image Credit: NASA/Matthew Dominick

      View the full article
    • By Amazing Space
      Venus: Earth’s Evil Twin Revealed | The Hottest Planet Explained
  • Check out these Videos

×
×
  • Create New...