Jump to content

Joshua Abel: Delivering Roman’s Optical Telescope Assembly On Time, On Target


Recommended Posts

  • Publishers
Posted

5 min read

Joshua Abel: Delivering Roman’s Optical Telescope Assembly On Time, On Target

Joshua Abel, a man wearing white coveralls, a light blue hair net, and a light blue face mask, stands and poses with arms crossed in front of the Nancy Grace Roman Space Telescope's primary mirror. The mirror is shaped like a large silver disk, reflecting part of an American flag in its upper surface. Both Joshua and the mirror are inside a clean room, with pipes, shelves, stairs, and storage lining the walls, most in shades of light turquoise. Black and yellow caution tape forms a barrier around the telescope mirror.
Joshua Abel’s job as lead systems engineer for the Nancy Grace Roman Space Telescope’s Optical Telescope Assembly is “to deliver the assembly to the Roman observatory on time, within budget, and meeting all the technical requirements.”
Credit: NASA / Chris Gunn

Name: Joshua Abel

Title: Lead systems engineer for the Roman Space Optical Telescope Assembly

Formal Job Classification: Flight Systems Design Engineer

Organization: Instrument/Payload Systems Engineering Branch (Code 592), Mission Engineering and Systems Analysis Division, Engineering and Technology Directorate

Editor’s note: The Nancy Grace Roman Space Telescope’s Optical Telescope Assembly (OTA) includes the telescope’s primary and secondary mirrors, as well as supporting optics. The OTA enables the telescope to collect light that is then delivered to the observatory instruments.

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As the lead systems engineer for the Roman Space Telescope Optical Telescope Assembly, I am the government technical authority for procurement of the assembly, currently being manufactured by L3Harris Corporation in Rochester, New York. I am responsible for technical oversight of the vendor and verifying requirements.

What was your path to becoming an aerospace engineer at Goddard?

In 1999, I received a B.S. in interdisciplinary engineering focused on biomedical engineering from Purdue University. I began a master’s in biomedical engineering in bioheat transfer from Purdue University, but left in 2001 to work at Space Systems/Loral as a thermal systems engineer for satellites.

In 2005, I came to Goddard to work on Hubble Servicing Mission 4 and other NASA satellite servicing projects as a thermal systems engineer. In 2018, I began supporting the New Opportunities Office as a systems engineer, later joining the Instrument/Payload Systems Engineering Branch in my current role.

What are your goals as the lead systems engineer for the Roman Space Telescope Optical Telescope Assembly?

My goal is to deliver the assembly to the Roman observatory on time, within budget, and meeting all the technical requirements. I lead a small team of subject matter experts to review the vendor’s plans and help resolve any technical issues.

What is your management style?

I have a broad engineering background which helps me ask the right questions. I like to build consensus within the team and consolidate everyone’s work into a cohesive and understandable package, communicating complex issues both within the team and to management.

What makes Goddard special?

Everyone here loves their work and is focused on mission success. Even when conversations are difficult and the stakes are high, the emotion comes from caring so deeply. As a systems engineer, my goal is to listen to all ideas and help find the best direction for the project.

Joshua Abel, a man with short gray hair and a short dark gray beard, smiles and poses with his daughter for a selfie. Joshua wears a bright blue soccer polo and his daughter, a young girl with long dark hair, wears a white soccer jersey. They pose in the shade of a large tree, with yards, driveways and more trees visible behind them.
Systems engineer Joshua Abel is a team player at work, where he and his team review vendor plans and resolve technical issues for the Roman Space Telescope’s Optical Telescope Assembly, and at home, where he plays and coaches soccer.
Courtesy of Joshua Abel

What drives you?

I try to do what is needed and contribute to the best of my ability. I am energized when someone says they need help, be it fixing things that are broken or putting new things together. I’m always excited to continue to learn from the our expert team members and vendors.

I prefer working in a team. I like the dynamic environment of systems engineering, which is full of difficult problems that need a larger group to get enough perspectives to solve.

My background and skill mix are a little bit of everything. I enjoy English, communication, math, and science. These interests help me see different sides of a problem.

I like to take things that are slow and repetitive and make them faster and more interesting for myself and others. For example, I like to write Microsoft Excel programs to analyze thermal model data and other large databases to improve productivity. 

What advice would you give young engineers?

Take whatever project you are working on and exceed expectations. Don’t be afraid to ask questions. Early tasks for young engineers are not always the most exciting, but work to the best of your ability and try to learn as much as you can. Understand the job and try to see if it can be accomplished better or faster. If you approach every task with this attitude, the next opportunity will always come.

Build your network of experts and use their lessons learned to help your project, always returning that help when you can. Oftentimes the most important piece of knowledge you’ll be able to provide your team is simply knowing who to call to for advice. All of NASA’s engineers are always willing to help.

What are your hobbies?

I play and coach soccer and I also play guitar with my three children around our fire pit. Like every engineer, I’m continually working on home improvement projects for my favorite manager, my wife, who is a thermal systems engineer at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 14, 2023
Editor
Jessica Evans
Contact
Rob Garner
rob.garner@nasa.gov
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Ben Smegelsky A scrub jay perches on a branch near the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 22, 2020. Kennedy shares space with the Merritt Island National Wildlife Refuge, which is home to more than 65 amphibian and reptile, 25 mammal, 117 fish, and 330 bird species.
      At the time this photo was taken, the NASA “meatball” logo – in the background here – on the Vehicle Assembly Building was being repainted. This iconic building is where the Artemis launch vehicles are stacked and processed in preparation for future missions to the Moon.
      Image credit: NASA/Ben Smegelsky
      View the full article
    • By Amazing Space
      LIVE: Stunning Lunar Views Captured with Seestar S50 Smart Telescope 🌕✨
    • By Space Force
      128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
      View the full article
    • By NASA
      6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
      NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
      For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
      In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
      “Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
      The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
      Image A:
      Neptune’s Auroras – Hubble and Webb
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
      The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
      This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
      The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
      From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
      “I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.” 
      Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
      Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
      “As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
      These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Read the research results published in Nature Astronomy.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun- hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Maryland
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science
      Henrik Melin (Northumbria University)
      Related Information
      View more: Webb images of Neptune
      Watch: Visualization of Neptune’s tilted magnetic axis
      Learn more : about Neptune
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      About Neptune
      About the Solar System
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Neptune



      Neptune Stories



      Our Solar System


      Share








      Details
      Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
    • By European Space Agency
      Image: ESA's Atomic Clock Ensemble in Space at NASA's Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...