Jump to content

The Benefits of Semiconductor Manufacturing in Low Earth Orbit (LEO) for Terrestrial Use


NASA

Recommended Posts

  • Publishers
51205771942-3869c2d30f-k.jpg?w=2048
NASA astronaut and Expedition 65 Flight Engineer Megan McArthur works in the Microgravity Science Glovebox swapping samples for an experiment called Solidification Using a Baffle in Sealed Ampoules, or SUBSA. The physics investigation explores experimental methods of crystallizing melts in microgravity and is expected to result in reduced fluid motion in the melt, leading to better distribution of subcomponents and the potential for improved technology used in producing semiconductor crystals.
NASA

Subject Matter Experts (SMEs) in semiconductor and in-space manufacturing collaborated on a white paper that outlines how microgravity benefits the production of semiconductors and related materials. Earth’s gravitational forces pose substantial barriers to quick, high-yield semiconductor production. Microgravity offers a path to overcome these barriers. There are also substantial practical benefits to incorporating LEO-based manufacturing into the supply chain. The white paper argues that transitioning this industry into space is a path forward to achieving NASA’s In Space Production Applications’ (InSPA) goals. These goals include strengthening U.S. technological leadership, improving national security, creating high-quality jobs, providing benefits to humanity, and enabling the development of a robust economy in LEO.

The paper, “Semiconductor Manufacturing in Low Earth Orbit for Terrestrial Use” can be found here.

Additional information on NASA’s InSPA portfolio can be found at:

www.nasa.gov/inspa

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      11 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Lisa Haber, Virginia Commonwealth University
      Dr. Brandon Alveshere, Virginia Commonwealth University
      Dr. Chris Gough, Virginia Commonwealth University
      Graduate Mentor:
      Mindy Priddy, Virginia Commonwealth University

      Mindy Priddy, Graduate Mentor
      Mindy Priddy, graduate mentor for the 2024 SARP Terrestrial Fluxes group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Angelina De La Torre
      Using NDVI as a Proxy for GPP to Predict Carbon Dioxide Fluxes
      Angelina De La Torre
      Climate change, driven primarily by greenhouse gases, poses a threat to the future of our planet. Among these gases is carbon dioxide (CO₂), which has a much longer atmospheric residence time compared to other greenhouse gases. One potential factor in reducing atmospheric CO₂ enrichment is plant productivity. Gross Primary Productivity (GPP) estimates the amount of CO₂ fixed during photosynthesis. The Normalized Difference Vegetation Index (NDVI) provides insight into the health of an ecosystem by measuring the density and greenness of vegetation. Therefore, it can be inferred that there is a relationship between NDVI and GPP, as greener plants are likely more productive. In this study, we used NDVI as a proxy for GPP and analyzed the effect NDVI had on CO₂ fluxes during California’s wet season between January and March 2023 in a restored tidal freshwater wetland. GPP and CO₂ flux data were obtained from the Dutch Slough AmeriFlux tower in Oakley, California. Landsat data were used to calculate the average NDVI. The influence of NDVI on GPP was assessed using linear regression. A second linear regression was then performed using NDVI and CO₂ flux, of which GPP is one component. We anticipate that wetlands with greater vegetation density will have lower CO₂ emissions.

      Because Landsat data scans in 16-day intervals, daily variation in NDVI could not be observed. This translates to a frequency discrepancy between the Landsat and AmeriFlux data, as AmeriFlux towers measure in half-hour intervals. Additionally, the wet season represented was limited by data availability, as the data before 2023 were unavailable. Despite data limitations in this study, the outlined process could be repeated in various wetland and climate classifications for further analysis of a larger sample size. This study could assist in developing strategies to increase CO₂ sequestration in an attempt to slow the effects of climate change.

      Samarth Jayadev
      Using Machine Learning to Assess Relationships between NDVI and Net Carbon Exchange During the COVID-19 Pandemic
      Samarth Jayadev
      Understanding the movement of carbon between Earth’s land surface and atmosphere is essential for ecosystem monitoring, creating climate change mitigation strategies, and assessing the carbon budget on national to global scales. Measures of greenness serve as indicators of processes such as photosynthesis that control carbon exchange and are vital in modeling of carbon fluxes. NASA’s Orbiting Carbon Observatory (OCO-2) provides high quality measurements of column-averaged CO₂ concentrations that can be used to derive net carbon exchange (NCE), a measure of CO₂ flux between terrestrial ecosystems and the atmosphere.
      From OCO-2, NCE data collected at the land nadir, land glint satellite position combined with in situ sampling can provide accurate measurements on a 1°x1° scale suitable for carbon flux characterization across the contiguous United States (CONUS). Normalized difference vegetation index (NDVI), which ranges from -1 to +1, measures the greenness of vegetation, serving as an indicator of plant density and health. This can help to understand ecosystem to carbon-cycle interactions and be leveraged for determining patterns with NCE. We examined the relationship between NDVI and NCE across CONUS during 2020 using Gradient Boosting Decision Trees (GBDT) which specialize in classifying and predicting non-linear relationships. This algorithm takes multiple weak learners (decision trees) and combines their predictions in an iterative ensemble method to improve prediction accuracy. Feature and permutation importance tests found that January and August (trough and peak NDVI, respectively) were the highest weighted predictor variables related to NCE. The dataset was split in a 90% training 10% test ratio across latitude/longitude grid cells to assess and verify model performance. Using the mean squared error loss function and hyperparameters with optimal estimators, tree depth, sample split, and learning rate the algorithm was able to converge the test predictions to match the deviance of the training data. The gradient boosting model can be applied to different months and years of NDVI/NCE to further explore these relationships or a multitude of research questions. Further studies should consider integrating land use and land cover change variables such as bare land and urbanization to improve predictions of NCE.

      Makai Ogoshi
      Deep-learning Derived Spaceborne Canopy Structural Metrics Predict Forest Carbon Fluxes
      Makai Ogoshi
      Terrestrial and airborne lidar data products describing canopy structure are potent predictors of forest carbon fluxes, but whether satellite data products produce similarly robust indicators of canopy structure is not known. The assessment of contemporary spaceborne lidar and other remote sensing data products as predictors of carbon fluxes is crucial to next generation instrument and data product design and large-spatial scale modeling. We investigated relationships between deciduous broadleaf forest canopy structure, derived from deep-learning models created with lidar data from GEDI and optical imagery from Sentinel-2, and forest carbon exchange. These included comparisons to in-situ continuous net ecosystem exchange (NEE), gross primary production (GPP), and net primary production (NPP). We find that the mean  canopy height from the gridded spaceborne product has a strong correlation with forest NPP, similar to prior analysis with ground-based lidar (portable canopy lidar; PCL). For comparison to NPP, heights taken from the gridded spaceborne product were compared by overlapping the product with nine terrestrial forest sites from the National Ecological Observatory Network (NEON). We used standard deviation of canopy height as a measure of canopy structural complexity. Complexity derived from the gridded spaceborne product does not show the same strong correlation with NPP as found when using PCL. Mean annual GPP and NEE across five years were compared to the gridded spaceborne product at six Fluxnet2015-tower sites with continuous, gap-filled carbon flux data. When compared to in-situ flux tower data, neither mean canopy height nor structural complexity strongly correlate to annual NEE or GPP. Primarily, the finding that derived spaceborne products exhibit a strong correlation between forest canopy height and NPP will advance global-scale application of forest-carbon flux predictions. Secondarily, a variety of limitations highlight shortcomings in the current terrestrial flux data network. A small number of available study sites, both spatially and temporally, and lack of resolution in vertical complexity of canopy structure both contribute to uncertainty in assessing the relationships to NEE and GPP.

      Sebastian Reed
      Porewater Methane Concentrations Vary Significantly Across A Freshwater Tidal Wetland
      Sebastian Reed
      Methane is a potent greenhouse gas that is over 80 times more powerful than CO₂ at trapping heat and accounts for an estimated 30% of global temperature rise associated with climate change. The largest natural source of methane worldwide is wetlands. Despite the role of methane in driving climate change, the magnitude of global annual wetland methane flux remains highly uncertain. This study analyzes the effects of greenness (assessed using Normalized Difference Vegetation Index; NDVI), plant species composition, rooting depth, atmospheric methane concentration, and plant longevity on porewater methane concentration at the Kimages Rice Rivers Center tidal freshwater wetland. Samples for atmospheric and porewater concentrations were conducted in situ in June 2024. For each sampling location (n = 23) we collected whole air samples (WAS) 2m above the marsh surface and porewater samples 5cm below the marsh surface. We visually assessed species composition at each sample location, with 12 species of wetland plants present overall. We used the TRY plant database to find the rooting depth, leaf nitrogen content, and lifespan of each species. Drone multispectral data from 2023 was used to estimate NDVI values. These variables were compared to the pore water methane concentration via stepwise linear regression. Leaf N content, NDVI, plant species, and WAS sampling did not show statistically significant correlation to porewater methane concentration. Rooting depth showed a slight positive correlation with porewater methane (alpha = 0.1, p = 0.08, R^2 = 0.1). Samples with only perennial plants (as opposed to annual plants) had a higher mean value of porewater methane (p = 0.1). Analyzing porewater methane provides insight as to what wetland components affect methanogenesis and methane release, which aids in assessing which plant functional traits are most responsible for driving or mitigating climate change. Results from this study and future research in this area has the potential to more accurately assess how methane cycles through wetlands to the atmosphere.

      Nohemi Rodarte
      Understanding the vertical profile of CO₂ concentration: How carbon dioxide levels change with altitude
      Nohemi Rodarte
      Carbon dioxide (CO₂) is one of the main greenhouse gasses that contribute to global warming.While the relationship between CO₂ concentrations and land cover types, such as forests and urban areas, is well documented, there is limited knowledge of how CO₂ concentrations vary with altitude at fine spatial scales. Guided by our hypothesis that CO₂ levels vary with altitude and increase with elevation, we used airborne data collected from the B200 aircraft, which flew at different altitudes (400 to 1200 feet) above the urban area of Hopewell, Virginia, between 9:40 AM and 10:40 AM. We analyzed the CO₂ concentrations recorded by the flight to obtain the median and range for each 100 feet of altitude. Our results reveal that carbon dioxide concentrations varied significantly across the range of altitudes investigated. Within the area studied, CO₂ concentrations were found to range between 410 and 470 ppm. The distribution of these concentrations along the altitude gradient shows a bimodal pattern, with notable peaks at altitudes of 700 to 800 feet and 1100 to 1200 feet. Although CO₂ levels were present at all measured altitudes, there was a noticeable drop in the mean concentration at 800 feet,which then stabilized until reaching 1,000 feet before rising again. This pattern indicates that the concentrations of this greenhouse gas are not uniformly distributed with altitude, but rather vary significantly, showing higher concentrations at certain elevations and lower concentrations at others. The CO₂ distribution fluctuates with altitude, showing higher or lower levels at specific heights rather than a smooth gradient, indicating that altitude impacts CO₂ concentrations. While we did not identify the drivers of this change, future studies could evaluate how factors such as surface emissions, atmospheric mixing, and local conditions may contribute to vertical CO₂ profiles, since the altitudes we considered in this research are within the troposphere.

      Camille Shaw
      Linking NDVI with CO₂ and CH₄ Fluxes: Insights into Vegetation and Urban Source-Sink Dynamics in the Great Dismal Swamp
      Camille Shaw
      In recent years, carbon dioxide, methane, and other greenhouse gases have gained attention because of their contribution to the rise in Earth’s global mean temperature. Methane and carbon dioxide have various sources and sinks, but an expanding array of sources have created a need to assess ongoing change in carbon balance. This study aims to quantify the relationship between Normalized Difference Vegetation Index, or NDVI, and methane and carbon dioxide fluxes. We measured carbon dioxide and methane concentrations within the boundary layer using the PICARRO instrument, focusing on the Great Dismal Swamp, a forested wetland, and surrounding areas in the Eastern Mid-Atlantic Region. Data collection occurred at various times of day and along different flight paths in 2016, 2017, and 2024, with each year representing data from a single season, either spring or fall, for temporal analysis. We calculated methane and carbon dioxide fluxes along the flight paths using airborne eddy covariance, a method for capturing accurate flux measurements while accounting for the mixing of gases in the boundary layer caused by heat. Additionally, we calculated NDVI for this area using NASA’s Landsat 8 and 9 satellite imagery. Analysis of the afternoon flight data revealed a negative linear correlation between NDVI and carbon dioxide flux. Urban areas, characterized by low NDVI, exhibit a positive carbon dioxide flux as a consequence of emissions from vehicles, while forested areas, with high NDVI, show a negative carbon dioxide flux because of photosynthesis. In contrast, methane flux shows minimal correlation with NDVI. The lack of correlation arises because forested wetlands, with high NDVI, emit substantial amounts of methane, while urban areas, despite having low NDVI, still produce significant methane emissions from landfills and industrial activities. Future research could further investigate how seasonal and diurnal variations influence the correlations between NDVI and greenhouse gases by collecting comprehensive data across all seasons within a given year and at various times of the day.

      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image from 13 November 2024 shows the Lewotobi Laki Laki volcano eruption on the island of Flores in southern Indonesia. View the full article
    • By European Space Agency
      Image: These two images acquired by Copernicus Sentinel-2 highlight how the mission can help distinguish between clouds and snow. View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.  
      The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.  
      The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.  
      “This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.” 
      Flying High Above Wildland Fires 
      Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency. 
      The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system. 
      When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region. 
      The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication. 
      Soaring Into the Future 
      The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA. 
      As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires. 
      “Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.” 
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
      5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
      Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Improving Firefighter Safety with STRATO
      Airborne Science at Ames
      Space Technology Mission Directorate
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 9 min read
      The Earth Observer Editor’s Corner: Fall 2024
      On September 18, 2024, the National Oceanic and Atmospheric Administration (NOAA) shared the first images of the Western Hemisphere from the GOES-19 satellite, its newest geostationary satellite launched on June 25, 2024 onboard a Falcon Heavy rocket from NASA’s Kennedy Space Center. Previously known as GOES-U, the satellite was renamed GOES-19 upon reaching geostationary orbit on July 7, 2024. GOES-19 orbits about 35,785 km above the equator at the same speed the Earth rotates, allowing the satellite to constantly view the same area of the planet and track weather conditions and hazards as they happen. The satellite’s Advanced Baseline Imager (ABI) instrument recently captured stunning views of Earth in 16 spectral channels. This data provides researchers information about Earth’s atmosphere, land, and ocean for short-term forecasts and tracking severe weather – see Figure. ABI data is also used for detecting and monitoring environmental hazards, such as wildfires, smoke, dust storms, volcanic eruptions, turbulence, and fog. Data from multiple ABI channels can be combined to create imagery that approximates what the human eye would see from space referred to as GeoColor (see Figure).
      Figure. [Left] The GOES-19 images show the contiguous U.S. observed by each of the Advanced Baseline Imager’s (ABI) 16 channels on August 30, 2024, at 6:00 PM UTC. This 16-panel image [progressing left to right, across each row] shows the ABI’s two visible (gray scale), four near-infrared (IR) (gray scale), and 10 infrared channels (warmer brightness temperatures of the IR bands map to warmer colors). Each band’s appearance illustrates how it reflects or absorbs radiation. [Right] The GOES-19 full disk GeoColor image combines data from multiple ABI channels to approximate what the human eye would see from space.  Figure Credit: NOAA GOES-19 is the final satellite in NOAA’s GOES-R series and serves as a bridge to a new age of advanced satellite technology. NOAA and NASA are currently developing NOAA’s next generation geostationary satellites, called Geostationary Extended Observations (GeoXO), to advance operational geostationary Earth observations.
      NASA Earth sciences celebrated several satellite milestone anniversaries in 2024. The Global Precipitation Measurement (GPM) Core Observatory (CO) celebrated its 10th anniversary in February while Aura and Orbiting Carbon Observatory–2 (OCO–2) celebrated their 20th and 10th anniversaries, respectively, in July. Here, we focus on GPM and Aura.
      The GPM CO launched on February 27, 2024, aboard a Japanese H-IIA rocket from Tanegashima Space Center in southern Japan, as a joint Earth-observing mission between NASA and the Japan Aerospace Exploration Agency (JAXA). To celebrate its 10th anniversary, GPM has been hosting special outreach activities. One example is the GPM 10-in-10 webinar series that began on February 8, 2024. This series of 10 public webinars explores GPM and the story behind the mission, which is aimed at anyone interested in science, technology, engineering, mathematics, and the synergy of these disciplines to better understand and protect our home planet.
      Now over 10 years into the mission, GPM continues to provide important data on precipitation around the globe leading to new scientific discoveries and contributing data to help society, from monitoring storms to supporting weather forecasts and aiding water-borne disease public health alerts.
      As an example, GPM made several passes of Hurricane Milton, which made landfall near Siesta Key, FL on October 9, 2024 as a Category 3 storm. As a complement to GPM CO observations, a multi-satellite sensor IMERG animation shows rainfall rates and accumulation over the course of Milton’s history.
      To read more about how GPM continues to observe important precipitation characteristics and gain physical insights into precipitation processes, please see the article “GPM Celebrates Ten Years of Observing Precipitation for Science and Society” in The Earth Observer.
      The last of NASA’s three EOS Flagships – Aura – marked 20 years in orbit on July 15, 2024, with a celebration on September 18, 2024, at Goddard Space Flight Center’s (GSFC) Recreational Center. The 120 attendees – including about 40 participating virtually – reminisced about Aura’s (originally named EOS-CHEM) tumultuous beginning, from the instrument and Principal Investigator (PI) selections up until the delayed launch at Vandenberg Space Force Base (then Air Force Base) in California. They remembered how Bill Townsend, who was Deputy Director of GSFC at the time, and Ghassem Asrar, who was NASA’s Associate Administrator for Earth Science, spent many hours on site negotiating with the Vandenberg and Boeing launch teams in preparation for launch (after several delays and aborts). Photo 1 shows the Aura mission program scientist, project scientists (PS), and several instrument principal investigators (PI) at Vandenberg shortly before launch.
      Photo 1. The Aura (formerly EOS CHEM) mission program scientist, project scientists (PS), and several of instrument principal investigators (PI) at Vandenberg Space Force Base (then Air Force Base) shortly before launch on July 15, 2004. The individuals pictured [left to right] are Reinhold Beer [NASA/Jet Propulsion Laboratory (JPL)—Tropospheric Emission Spectrometer (TES) PI]; John Gille [University of Colorado, Boulder/National Center for Atmospheric Research (NCAR)—High Resolution Dynamics Limb Sounder (HIRDLS) PI]; Pieternel Levelt [Koninklijk Nederlands Meteorologisch Instituut (KNMI), Royal Netherlands Meteorological Institute—Ozone Monitoring Instrument (OMI) PI]; Ernest Hilsenrath [NASA’s Goddard Space Flight Center (GSFC)—Aura Deputy Scientist and U.S. OMI Co-PI]; Anne Douglass [GSFC—Aura Deputy PS]; Mark Schoeberl [GSFC—Aura Project Scientist];Joe Waters [NASA/JPL—Microwave Limb Sounder (MLS) PI]; P.K. Bhartia [GSFC—OMI Science Team Leader and former Aura Project Scientist]; and Phil DeCola [NASA Headquarters—Aura Program Scientist]. NOTE: Affiliations/titles listed for individuals named were those at the time of launch. Photo Credit: Ernest Hilsenrath At the anniversary event, Bryan Duncan [GSFC—Aura Project Scientist] gave formal opening remarks. Aura’s datasets have given a generation of scientists the most comprehensive global view of gases in Earth’s atmosphere to better understand the chemical and dynamic processes that shape their concentrations. Aura’s objective was to gather data to monitor Earth’s ozone layer, examine trends in global air pollutants, and measure the concentration of atmospheric constituents contributing to climate forcing. To read more about Aura’s incredible 20 years of accomplished air quality and climate science, see the anniversary article “Aura at 20 Years” in The Earth Observer.
      To read more about the anniversary event, see Summary of Aura 20th Anniversary Event.
      It has been over a year and a half since the Surface Water and Ocean Topography (SWOT) mission began collecting data on the height of nearly all water on Earth’s surface, including oceans, lakes, rivers, and reservoirs. During that time, data collected by the satellite has started to improve our understanding of energy in the ocean, yielding insights on surface currents and waves, internal tides, the vertical mixing of seawater, as well as atmosphere–ocean interactions. Notably, SWOT has been measuring the amplitude of solitary internal waves in the ocean. These waves reflect the dynamics of internal tides (tides that occur deep in the ocean rather than at the surface) that can influence biological productivity as well as ocean energy exchanges through their contribution to mixing and general oceanic circulation.
      SWOT measurements are also being used to study inland and coastal flooding to inform water management strategies. Earlier this year, researchers used SWOT data to measure the total volume of water during major floods in southern Brazil in April to improve understanding of these events and prepare for the future. In addition, the Water Ministry of Bangladesh is working to incorporate SWOT water elevation maps, along with other near-real time satellite data, into their flood forecasts. Researchers at Alexandria University, Egypt are using SWOT data in the Nile River Basin to improve dam operations. A detailed account of SWOT Significant Events since launch is available online. To learn more about project status and explore the many facets of operational and applied uses of SWOT data, please see The Earth Observer article, “Summary of the 10th SWOT Applications Workshop.”
      In September 2024, the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) gathered data for the validation of the PACE mission, which launched in February 2024.  The operations spanned Southern and Central California and nearby coastal regions, logging 81 flight hours for the NASA ER-2, which operated out of NASA’s Armstrong Flight Research Center (AFRC) in Edwards, CA, and 60 hours for Twin Otter aircraft, which was operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) at the Naval Postgraduate School (Monterey, CA) out of Marina Municipal Airport in Marina, CA – see Photo 2.  
      Photo 2. The Twin Otter aircraft operated out of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) during the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) campaign. The image shows the Twin Otter aircraft missing the approach at Marina Airport to check instrument performance on the aircraft against identical instrumentation on an airport control tower. Photo credit: ???TBD ??? Congratulations to PACE-PAX leads Kirk Knobelspiesse [GSFC], Brian Cairns [NASA Goddard Institute for Space Studies (GISS)], and Ivona Cetinić [GSFC/Morgan State University] for successfully executing and planning this campaign. PACE–PAX data will be available in March 2025 via NASA’s Langley Research Center Suborbital Science Data for Atmospheric Composition website and NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS).
      Photo 3. Clockwise from top left: Mike Ondrusek (NOAA), mission scientist of the R/V Shearwater, waves to the Naval Postgraduate School (NPS) Twin Otter as it samples at low altitude. Bridge fire in San Gabriel mountains, September 10, 2024. Photo by NASA ER-2 pilot Kirt Stallings. Carl Goodwin (JPL) performs calibration reference measurements at Ivanpah Playa, California. Scott Freeman (GSFC) and Harrison Smith (GSFC) deploy instrumentation from the R/V Shearwater in the Santa Barbara Channel. Instrument integration on the NASA ER-2 in preparation for PACE-PAX. San Francisco observed by the NPS Twin Otter as it samples at low altitude over the San Francisco Bay. The R/V Shearwater seen from the NPS Twin Otter. Photo credit: ???TBD ??? Shifting venues, NASA’s BlueFlux Campaign conducted a series of ground-based and airborne fieldwork missions out of the Miami Homestead Air Reserve Base and the Miami Executive Airport in Miami-Dade County, which are adjacent to the eastern border of the Everglades National Park. The full study region – broadly referred to as South Florida – is narrowly defined by the wetland ecosystems that extend from Lake Okeechobee and its Northern estuaries to the saltwater marshland and mangrove forests along the state’s southernmost shore. 
      Glenn Wolfe [GSFC] and Erin Delaria [GSFC/UMD] organized more than 34 flights across 5 separate fieldwork deployments during the campaign. The data during BlueFlux are intended to contribute to a more robust understanding of how Florida’s coastal ecology fits into the carbon cycle.  The article, “NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida,” provides additional information about this program, which was made possible by David Lagomasino [East Carolina University], Cheryl Doughty [GSFC/UMD], Lola Fatoyinbo [GSFC], and Peter Raymond [Yale University].  
      To learn more about PACE-PAX and BlueFlux, see: Updates on NASA Field Campaigns.
      Notable recent Science Support Office (SSO) outreach activities include the 2024 Eclipse outreach and engagement efforts on April 7, 2024, in Kerrville, TX and Cleveland, OH. The two locations are among a dozen that NASA set up along path of totality. To read about the 2024 Total Solar Eclipse through the eyes of NASA outreach and engagement activities, please see The Earth Observer feature article, “Looking Back on Looking Up: The 2024 Total Solar Eclipse.”
      The SSO also supported the United Nations (UN) Summit of the Future event and the 79th General Assembly High Level week, September 19–27, 2024 at UN Headquarters (HQ) in New York City, NY. SSO supported the NASA Sea Level Change Team (N-SLCT) during the High-level Meeting on Sea-Level Rise by having Hyperwall content available for the release of the new Pacific Flooding Analysis Tool. NASA Administrator Bill Nelson visited the Hyperwall on September 23 with Aarti Holla-Maini [UN Office for Outer Space Affairs (UNOOSA)—Director]. Karen St. Germain [NASA HQ—Director of the Earth Science Division], Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division], Kate Calvin [NASA HQ—NASA Chief Scientist], Lesley Ott [GSFC— Climate Scientist], and Anjali Tripathi [NASA/Jet Propulsion Laboratory (JPL)—Astrophysicist] talked with delegates and members about NASA Science and accessed NASA global datasets. Photos from the event are available at the SSO Flickr Page.
      Looking ahead, the SSO is once again leading the planning and logistics for the NASA exhibit at the American Geophysical Union (AGU) Fall Meeting, which will be held December 9–13, 2024 in Washington, DC. Nearly 40 NASA projects and missions will have hands-on activities within the perimeter of the NASA Science exhibit, from the James Webb Space Telescope to the Airborne Science Fleet. The NASA Hyperwall, a video wall used for visual-forward science storytelling, will host approximately 50 Hyperwall stories and presentations throughout the meeting, including presentations delivered by the 2024 winners of the NASA-funded AGU Michael H. Freilich Student Visualization Competition. The exhibit will also feature roughly 40 tech demonstrations throughout the week, covering a wide range of hands-on introductions to everything from the capabilities of the OpenSpace data visualization software to the scientific applications of augmented reality. Please be sure to stop by the NASA exhibit when you are at AGU.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Nov 14, 2024 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...