Jump to content

NASA’s Webb, Hubble Combine to Create Most Colorful View of Universe


Recommended Posts

  • Publishers
Posted

NASA’s James Webb Space Telescope and Hubble Space Telescope have united to study an expansive galaxy cluster known as MACS0416. The resulting panchromatic image combines visible and infrared light to assemble one of the most comprehensive views of the universe ever taken. Located about 4.3 billion light-years from Earth, MACS0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster.

Image: Galaxy Cluster MACS0416

A field of galaxies on the black background of space. In the middle, stretching from left to right, is a collection of dozens of yellowish spiral and elliptical galaxies that form a foreground galaxy cluster. Among them are distorted linear features, which mostly appear to follow invisible concentric circles curving around the center of the image.
This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by Webb. The image reveals a wealth of details that are only possible to capture by combining the power of both space telescopes. In this image, blue represents data at wavelengths of 0.435 and 0.606 microns (Hubble filters F435W and F606W); cyan is 0.814, 0.9, and 1.05 microns (Hubble filters F814W, and F105W and Webb filter F090W); green is 1.15, 1.25, 1.4, 1.5, and 1.6 microns (Hubble filters F125W, F140W, and F160W, and Webb filters F115W and F150W); yellow is 2.00 and 2.77 microns (Webb filters F200W, and F277W); orange is 3.56 microns (Webb filter F356W); and red represents data at 4.1 and 4.44 microns (Webb filters F410M and F444W).
NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

The image reveals a wealth of details that are only possible to capture by combining the power of both space telescopes. It includes a bounty of galaxies outside the cluster and a sprinkling of sources that vary over time, likely due to gravitational lensing – the distortion and amplification of light from distant background sources.

This cluster was the first of a set of unprecedented, super-deep views of the universe from an ambitious, collaborative Hubble program called the Frontier Fields, inaugurated in 2014. Hubble pioneered the search for some of the intrinsically faintest and youngest galaxies ever detected. Webb’s infrared view significantly bolsters this deep look by going even farther into the early universe with its infrared vision.

“We are building on Hubble’s legacy by pushing to greater distances and fainter objects,” said Rogier Windhorst of Arizona State University, principal investigator of the PEARLS program (Prime Extragalactic Areas for Reionization and Lensing Science), which took the Webb observations.

What the Colors Mean

To make the image, in general the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The broad range of wavelengths, from 0.4 to 5 microns, yields a particularly vivid landscape of galaxies.

Those colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant as detected by Webb. Some galaxies also appear very red because they contain copious amounts of cosmic dust that tends to absorb bluer colors of starlight.

“The whole picture doesn’t become clear until you combine Webb data with Hubble data,” said Windhorst.

Image: Side-by-side Hubble/Webb

Two side-by-side photos of the same region of space. The left image is labeled “HST” and the right image “JWST.” A variety of galaxies of various shapes are scattered across the image, making it feel densely populated. The JWST image contains a number of red galaxies that are invisible or only barely visible in the HST image.
This side-by-side comparison of galaxy cluster MACS0416 as seen by the Hubble Space Telescope in optical light (left) and the James Webb Space Telescope in infrared light (right) reveals different details. Both images feature hundreds of galaxies, however the Webb image shows galaxies that are invisible or only barely visible in the Hubble image. This is because Webb’s infrared vision can detect galaxies too distant or dusty for Hubble to see. (Light from distant galaxies is redshifted due to the expansion of the universe.) The total exposure time for Webb was about 22 hours, compared to 122 hours of exposure time for the Hubble image.
NASA, ESA, CSA, STScI

Christmas Tree Galaxy Cluster

While the new Webb observations contribute to this aesthetic view, they were taken for a specific scientific purpose. The research team combined their three epochs of observations, each taken weeks apart, with a fourth epoch from the CANUCS (CAnadian NIRISS Unbiased Cluster Survey) research team. The goal was to search for objects varying in observed brightness over time, known as transients.

They identified 14 such transients across the field of view. Twelve of those transients were located in three galaxies that are highly magnified by gravitational lensing, and are likely to be individual stars or multiple-star systems that are briefly very highly magnified. The remaining two transients are within more moderately magnified background galaxies and are likely to be supernovae.

“We’re calling MACS0416 the Christmas Tree Galaxy Cluster, both because it’s so colorful and because of these flickering lights we find within it. We can see transients everywhere,” said Haojing Yan of the University of Missouri in Columbia, lead author of one paper describing the scientific results.

Finding so many transients with observations spanning a relatively short time frame suggests that astronomers could find many additional transients in this cluster and others like it through regular monitoring with Webb.

A Kaiju Star

Among the transients the team identified, one stood out in particular. Located in a galaxy that existed about 3 billion years after the big bang, it is magnified by a factor of at least 4,000. The team nicknamed the star system “Mothra” in a nod to its “monster nature,” being both extremely bright and extremely magnified. It joins another lensed star the researchers previously identified that they nicknamed “Godzilla.” (Both Godzilla and Mothra are giant monsters known as kaiju in Japanese cinema.)

Interestingly, Mothra is also visible in the Hubble observations that were taken nine years previously. This is unusual, because a very specific alignment between the foreground galaxy cluster and the background star is needed to magnify a star so greatly. The mutual motions of the star and the cluster should have eventually eliminated that alignment.

Image: Gravitationally Lensed Galaxy

A field of galaxies on the black background of space. At center left, a particularly prominent linear feature stretches vertically. It is outlined by a white box, and a lightly shaded wedge leads to an enlarged view at the bottom right. A spot near the middle of the feature is labeled 'Mothra.'
This image of galaxy cluster MACS0416 highlights one particular gravitationally lensed background galaxy, which existed about 3 billion years after the big bang. That galaxy contains a transient, or object that varies in observed brightness over time, that the science team nicknamed “Mothra.” Mothra is a star that is magnified by a factor of at least 4,000 times. The team believes that Mothra is magnified not only by the gravity of galaxy cluster MACS0416, but also by an object known as a “milli-lens” that likely weighs about as much as a globular star cluster.
NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

The most likely explanation is that there is an additional object within the foreground cluster that is adding more magnification. The team was able to constrain its mass to be between 10,000 and 1 million times the mass of our Sun. The exact nature of this so-called “milli-lens,” however, remains unknown.

“The most likely explanation is a globular star cluster that’s too faint for Webb to see directly,” stated Jose Diego of the Instituto de Física de Cantabria in Spain, lead author of the paper detailing the finding. “But we don’t know the true nature of this additional lens yet.”

The Yan et al. paper is accepted for publication in The Astrophysical Journal. The Diego et al. paper has been published in Astronomy & Astrophysics.

The Webb data shown here was obtained as part of PEARLS GTO program 1176.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Claire Andreoliclaire.andreoli@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Hannah Braun hbraun@stsci.edu , Christine Pulliamcpulliam@stsci.edi
Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Research Results: the Yan et al. paper is accepted for publication in The Astrophysical Journal.

Research Results: the Diego et al. paper has been published in Astronomy & Astrophysics.

Related Information

Galaxies Basics – https://universe.nasa.gov/galaxies/basics/

Galaxies Evolution – https://universe.nasa.gov/galaxies/evolution/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Webb News – https://science.nasa.gov/mission/webb/latestnews/

Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Hubble Mission Page – https://science.nasa.gov/mission/hubble

Hubble News – https://science.nasa.gov/mission/hubble/hubble-news/

Hubble Images – https://science.nasa.gov/mission/hubble/multimedia/hubble-images/

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, K. Noll This newly reprocessed image released on April 18, 2025, provides a new view of an enormous, 9.5-light-year-tall pillar of cold gas and dust. Despite its size, it’s just one small piece of the greater Eagle Nebula, also called Messier 16.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      Download this image.
      Image credit: ESA/Hubble & NASA, K. Noll
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Spies Cosmic Pillar in Eagle Nebula
      This NASA/ESA Hubble Space Telescope image features a small portion of the Eagle Nebula (Messier 16). Credits:
      ESA/Hubble & NASA, K. Noll As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      New images of NGC 346 and the Sombrero Galaxy have already been published. Now, ESA/Hubble is revisiting the Eagle Nebula (originally published in 2005 as part of Hubble’s 15th anniversary celebrations) with new image processing techniques.
      Unfurling along the length of the image is a pillar of cold gas and dust that is 9.5 light-years tall. As enormous as this dusty pillar is, it’s just one small piece of the greater Eagle Nebula, also called Messier 16. The name Messier 16 comes from the French astronomer Charles Messier, a comet hunter who compiled a catalog of deep-sky objects that could be mistaken for comets.
      This NASA/ESA Hubble Space Telescope image features a towering structure of billowing gas in the Eagle Nebula (Messier 16). The pillar rises 9.5 light-years tall and is 7,000 light-years away from Earth. ESA/Hubble & NASA, K. Noll The name Eagle Nebula was inspired by the nebula’s appearance. The edge of this shining nebula is shaped by dark clouds like this one, giving it the appearance of an eagle spreading its wings.
      Not too far from the region pictured here are the famous Pillars of Creation, which Hubble photographed multiple times, with images released in 1995 and 2015.
      The heart of the nebula, which is located beyond the edge of this image, is home to a cluster of young stars. These stars have excavated an immense cavity in the center of the nebula, shaping otherworldly pillars and globules of dusty gas. This particular feature extends like a pointing finger toward the center of the nebula and the rich young star cluster embedded there.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      This towering structure of billowing gas and dark, obscuring dust might only be a small portion of the Eagle Nebula, but it is no less majestic in appearance for it. 9.5 light-years tall and 7000 light-years distant from Earth, this dusty sculpture is refreshed with the use of new processing techniques. The new Hubble image is part of ESA/Hubble’s 35th anniversary celebrations. Credit: ESA/Hubble & NASA, K. Noll, N. Bartmann (ESA/Hubble); Music: Stellardrone – Ascent The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble Eagle Nebula Images and Science
      Eagle Nebula Pillar
      Learn more about and download the image above.


      Hubble’s Messier Catalog: Messier 16 (Eagle Nebula)
      Messier 16, better known as the Eagle Nebula, has provided Hubble with some of its most iconic images.


      Embryonic Stars Emerge from Interstellar “Eggs”
      Eerie, dramatic Hubble pictures show newborn stars emerging from “eggs” – not the barnyard variety – but rather dense, compact pockets of interstellar gas called evaporating gaseous globules (EGGs). 


      The Pillars of Creation: A 3D Multiwavelength Exploration
      This scientific visualization explores the iconic Pillars of Creation in the Eagle Nebula (Messier 16 or M16) using data from NASA’s Hubble and Webb space telescopes.


      Hubble Goes High Def to Revisit the Iconic ‘Pillars of Creation’
      Explore hands-on activities, interactive, lesson plans, educator guides, and other downloadable content about this topic.


      Location of Hubble images in the Eagle Nebula
      This wide-field image of the Eagle Nebula shows the areas Hubble viewed in greater detail with Hubble’s Wide-Field Planetary Camera 2 (WFPC2) in 1995 and Advanced Camera for Surveys (ACS) in 2005.


      The Eagle Has Risen: Stellar Spire in the Eagle Nebula
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.


      Eagle Nebula (M16) Pillar Detail: Portion of Top
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.




      Share








      Details
      Last Updated Apr 18, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae The Universe
      Related Links and Documents
      Hubble’s 35th Anniversary celebrations ESA/Hubble’s 35th Anniversary celebrations Release on ESA’s website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spots a Squid in the Whale
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy. ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
      The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
      Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
      The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
      Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 17, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Pioneers Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights



      Science Behind the Discoveries


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 4 Min Read Hubble Provides New View of Galactic Favorite
      NASA/ESA Hubble Space Telescope image of the Sombrero Galaxy, also called Messier 104. Credits:
      ESA/Hubble & NASA, K. Noll As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      ESA/Hubble published a new image of NGC 346 as the first installment in the series. Now, they are revisiting a fan-favorite galaxy with new image processing techniques. The new image reveals finer detail in the galaxy’s disk, as well as more background stars and galaxies.
      Over the past two decades, Hubble has released several images of the Sombrero Galaxy, including this well-known Hubble image from October 2003. In November 2024, the NASA/ESA/CSA James Webb Space Telescope also provided an entirely new perspective on this striking galaxy.
      Located around 30 million light-years away in the constellation Virgo, the Sombrero Galaxy is instantly recognizable. Viewed nearly edge on, the galaxy’s softly luminous bulge and sharply outlined disk resemble the rounded crown and broad brim of the Mexican hat from which the galaxy gets its name.
      NASA/ESA Hubble Space Telescope image of the Sombrero Galaxy, also called Messier 104. ESA/Hubble & NASA, K. Noll Though packed with stars, the Sombrero Galaxy is surprisingly not a hotbed of star formation. Less than one solar mass of gas is converted into stars within the knotted, dusty disk of the galaxy each year. Even the galaxy’s central supermassive black hole, which at nine billion solar masses is more than 2,000 times more massive than the Milky Way’s central black hole, is fairly calm.
      The galaxy is too faint to spot with the unaided eye, but it is readily viewable with a modest amateur telescope. Seen from Earth, the galaxy spans a distance equivalent to roughly one-third the diameter of the full Moon. The galaxy’s size on the sky is too large to fit within Hubble’s narrow field of view, so this image is actually a mosaic of several images stitched together.
      One of the things that makes this galaxy especially notable is its viewing angle, which is inclined just six degrees off of the galaxy’s equator. From this vantage point, intricate clumps and strands of dust stand out against the brilliant white galactic nucleus and bulge, creating an effect not unlike Saturn and its rings — but on an epic galactic scale.
      At the same time, this extreme angle makes it difficult to discern the structure of the Sombrero Galaxy. It’s not clear whether it’s a spiral galaxy, like our own Milky Way, or an elliptical galaxy. Curiously, the galaxy’s disk seems like a fairly typical disk for a spiral galaxy, and its spheroidal bulge and halo seem fairly typical for an elliptical galaxy — but the combination of the two components resembles neither a spiral nor an elliptical galaxy.
      Researchers used Hubble to investigate the Sombrero Galaxy, measuring the metals (what astronomers call elements heavier than helium) in stars in the galaxy’s expansive halo. This type of measurement can help astronomers better understand a galaxy’s history, potentially revealing whether it merged with other galaxies in the past. In the case of the Sombrero Galaxy, extremely metal-rich stars in the halo point to a possible merger with a massive galaxy several billion years ago. An ancient galactic clash, hinted at by Hubble’s sensitive measurements, could explain the Sombrero Galaxy’s distinctive appearance.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble Sombrero Galaxy Images and Science
      Sombrero Galaxy
      Learn more about and download the image above.


      Hubble’s Messier Catalog: M104 (Sombrero Galaxy)
      Hubble easily resolves some of the Sombrero Galaxy’s roughly 2,000 globular clusters.


      Beyond the Brim, Sombrero Galaxy’s Halo Suggests Turbulent Past
      Surprising new data from NASA’s Hubble Space Telescope suggests the smooth, settled “brim” of the Sombrero galaxy’s disk may be concealing a turbulent past. 


      Heritage Project Celebrates Five Years of Harvesting the Best Images from Hubble Space Telescope
      The Hubble Heritage Project released more than 65 images of dazzling celestial objects, including planets, dying stars, regions of star formation, clusters of stars, individual galaxies, and even clusters of galaxies. 




      Share








      Details
      Last Updated Apr 16, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center The Universe
      Related Links and Documents
      Hubble’s 35th Anniversary celebrations ESA/Hubble’s 35th Anniversary celebrations Release on ESA’s website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Hubble’s 35th Anniversary


      View the full article
    • By European Space Agency
      Image: Sombrero Galaxy View the full article
  • Check out these Videos

×
×
  • Create New...