Jump to content

Peter Griffith: Diving Into Carbon Cycle Science


NASA

Recommended Posts

  • Publishers

5 min read

Peter Griffith: Diving Into Carbon Cycle Science

Peter Griffith, a man with short gray hair, smiles and poses for an official portrait. He wears a black collared shirt with the NASA logo on his left chest. A huge model of Earth is visible out of focus behind him in a large, sunlit room.
Dr. Peter Griffith is the director of NASA’s Carbon Cycle and Ecosystems Office. “As a scientist, I started off in the water and then gradually moved to on top of the water, and then ultimately went up into the air and into space, at least with the instrument eyes that we have on the world,” he said. “In some respects, I was a carbon cycle scientist since before it was cool.”
NASA / Angeles Miron

Name: Peter Griffith

Title: Director, NASA Carbon Cycle and Ecosystems Office

Organization: Biospheric Sciences Laboratory, Code 618

What’s your official role at Goddard?

I lead NASA’s Carbon Cycle and Ecosystems Office, which is in the Biospheric Sciences Laboratory at Goddard. We answer to NASA Headquarters, we support the Carbon Cycle and Ecosystems Focus area, and we support different elements of the funded program that comes out of that. To a great extent, we support the terrestrial ecology program, but also ocean biology and biogeochemistry, biodiversity, the Carbon Monitoring System, and some application work.

A lot of our work consists of supporting field campaigns. These are activities where dozens and sometimes hundreds of investigators go out into amazing parts of the world and do the work on the ground – or on the water – to have an up-close view of what’s happening in critical parts of the planet and couple that fine-scale information with observations from remote sensing instruments on aircraft and ultimately on satellites.

What do you do on a day-to-day basis?

One of the really fun things I get to do is coordinate with our teams that are out in the field and the flight crews. We’ve got an aircraft, a relatively small twin-engine turboprop that’s flown in Alaska with an instrument called AVIRIS, a very fancy camera that sees lots of colors and makes images from it that have far more wavelengths than what your cell phone camera has in it. It’s called an imaging spectrometer. We fly that to look at vegetation characteristics and methane emissions across Alaska and some parts of Canada.

A couple months ago, I got to go up and spend some time in Fairbanks working with the instrument crew from NASA’s Jet Propulsion Laboratory in Southern California and the flight crew and fine-tune when and where we would fly each day. I don’t do lab work or very much field work at this point, so an awful lot of it is coordination with scientists and engineers to help us go to the right places and measure the right things.

How did your path to Goddard start?

I was a kid growing up in the in the Apollo program era, and I lived in my parents’ house on a lake in Central Florida about 50 miles from Cape Canaveral. A lot of my childhood consisted of catching alligators in the lake and watching Saturn V rockets take off. It was very exciting.

Because I was a giant nerd with big, thick glasses, being an astronaut was completely off the table, I knew that. But that whole thing about swimming in the lake took me in, ultimately, into being a scuba diver and going into marine biology. As a scientist, I started off in the water and then gradually moved to on top of the water, and then, ultimately went up into the air and into space, at least with the instrument eyes that we have on the world. In some respects, I was a carbon cycle scientist since before it was cool.

Dr. Peter Griffith stands with two
Peter Griffith, Brian Howard and Xanthe Walker discuss field work in Denali National Park during a 2016 expedition.
NASA / Kate Ramsayer

Do you have any cool stories from the field?

Oh, boy. We have several 100 investigators that have been funded over the years and probably 100 or more who are involved in one way or another, and I probably credit a lot of them for having the coolest stories, But in my own role, I’ve had conversations and consultations with federal and state and local folks in Alaska and Canada about where and when we fly our airborne instruments, so in the course of that, I’ve had the chance to talk with representatives from First Nations about what their concerns are. It’s been really interesting for me, very broadening of my knowledge from my narrow view as a scientist. We like to think we know a lot of things, but in talking with many of our Indigenous partners, I continue to learn that there are a lot of things that we don’t know, and that I don’t know.

One of the great things about this job is getting to learn new things all the time. Sometimes it’s about new satellites or new ways of using different kinds of radar and lidar to observe the planet. That is certainly a stimulating part of the job, but another really stimulating part of the job is getting to know people and getting to see their world and hear them explain how they see the world through their eyes.

Do you ever miss doing field work?

That’s a really good question. It’s a challenge because, there are a lot of sacrifices that you make as a field scientist. It may put you a very long way away from your family, for instance. One of the reasons, actually, that I moved into project management was that it gave me a better work-life balance at a time when I had small kids.

It’s been so fun working at Goddard Space Flight Center. There are still times when – and particularly after having to work remotely for a while – that I come on campus and see the great, big NASA emblem on the side of the High Bay Clean Room building and I go, “I can’t believe I get to work here.”

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Ananya Udaygiri
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:

Rob Garner

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 08, 2023
Editor
Jessica Evans
Contact
Rob Garner
rob.garner@nasa.gov
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Tiny satellites, also known as CubeSats, are pictured after being deployed into Earth orbit from a small satellite orbital deployer on the outside of the International Space Station’s Kibo laboratory module. The CubeSats were delivered aboard the Northrop Grumman Cygnus space freighter and will serve a variety of educational and research purposes for public and private organizations around the world.
      Image Credit: NASA/Tracy Dyson
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A fisheye lens attached to an electronic still camera was used to capture this image of NASA astronaut Don Pettit.NASA Science ideas are everywhere. Some of the greatest discoveries have come from tinkering and toying with new concepts and ideas. NASA astronaut Don Pettit is no stranger to inventing and discovering. During his previous missions, Pettit has contributed to advancements for human space exploration aboard the International Space Station resulting in several published scientific papers and breakthroughs.

      Pettit, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, will launch to the orbiting laboratory in September 2024. In preparation for his fourth spaceflight, read about previous “science of opportunity” experiments Pettit performed during his free time with materials readily available to the crew or included in his personal kit.

      Freezing Ice in Space
      Thin ice under polarized light frozen aboard the International Space Station.NASA Have you ever noticed a white bubble inside the ice in your ice tray at home? This is trapped air that accumulates in one area due to gravity. Pettit took this knowledge, access to a -90° Celsius freezer aboard the space station, and an open weekend to figure out how water freezes in microgravity compared to on Earth. This photo uses polarized light to show thin frozen water and the visible differences from the ice we typically freeze here on Earth, providing more insight into physics concepts in microgravity.

      Space Cup
      NASA astronaut Don Pettit demonstrates how surface tension, wetting, and container shape hold coffee in the space cup.NASA Microgravity affects even the most mundane tasks, like sipping your morning tea. Typically, crews drink beverages from a specially sealed bag with a straw. Using an overhead transparency film, Pettit invented the prototype of the Capillary Beverage, or Space Cup. The cup uses surface tension, wetting, and container shape to mimic the role of gravity in drinking on Earth, making drinking beverages in space easier to consume and showing how discoveries aboard station can be used to design new systems.
      Planetary Formation
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Astronaut Don Pettit demonstrates a mixture of coffee grounds and sugar sticking together in microgravity to understand planetary formation. NASA Using materials that break into very small particles, such as table salt, sugar, and coffee, Pettit experimented to understand planetary formation. A crucial early step in planet formation is the aggregation or clumping of tiny particles, but scientists do not fully understand this process. Pettit placed different particulate mixtures in plastic bags, filled them with air, thoroughly shook the bags, and observed that the particles clumped within seconds due to what appears to be an electrostatic process. Studying the behavior of tiny particles in microgravity may provide valuable insight into how material composition, density, and turbulence play a role in planetary formation.
      Orbital Motion
      Charged water particles orbit a knitting needle, showing electrostatic processes in space. NASA Knitting needles made of different materials arrived aboard station as personal crew items. Pettit electrically charged the needles by rubbing each one with paper. Then, he released charged water from a Teflon syringe and observed the water droplets orbit the knitting needle, demonstrating electrostatic orbits in microgravity. The study was later repeated in a simulation that included atmospheric drag, and the 3D motion accurately matched the orbits seen in the space station demonstration. These observations could be analogous to the behavior of charged particles in Earth’s magnetic field and prove useful in designing future spacecraft systems.
      Astrophotography
      Top: NASA astronaut Don Pettit photographed in the International Space Station cupola surrounded by cameras. Bottom: Star trails photographed by NASA astronaut Don Pettit in March of 2012.NASA An innovative photographer, Pettit has used time exposure, multiple cameras, infrared, and other techniques to contribute breathtaking images of Earth and star trails from the space station’s unique viewpoint. These photos contribute to a database researchers use to understand Earth’s changing landscapes, and this imagery can inspire the public’s interest in human spaceflight.

      Christine Giraldo
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Keep Exploring Discover More Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Learn Home NASA Earth Science Education… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers selected to receive “Insects 2022 Best Paper Award” for research and review articles published in Insects from January 1 to December 31, 2022.
      One of the winning papers was co-authored by Russanne Low, PhD, Institute for Global Environmental Strategies (IGES). Low is a member of the NASA Earth Science Education Collaborative (NESEC), a NASA Science Activation project, and science lead for the Global Learning & Observations to Benefit the Environment (GLOBE) Mosquito Habitat Mapper.
      The paper – Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes – was published as part of a special issue of Insects on Citizen Science Approaches to Vector Surveillance. It is in the top 5% of all research outputs scored by Altmetric, which is a high-level measure of the quality and quantity of online attention that it has received. The scoring algorithm takes various factors into account, such as the relative reach of the different sources of attention. The paper has been cited 23 times.
      Papers were selected by the journal’s Award Committee according to the following criteria:
      – Scientific merit and broad impact;
      – Originality of the research objectives and/or the ideas presented;
      – Creativity of the study design or uniqueness of the approaches and concepts;
      – Clarity of presentation;
      – Citations and downloads.
      Each winner of the best paper award will receive CHF 500 and a chance to publish a paper free of charge in Insects in 2024 after peer review.
      The paper is a result of a collaboration by IGES with University of South Florida, Woodrow Wilson International Center for Scholars, Universitat Pompeu Fabra, and iNaturalist.
      Following is the full citation: Ryan M. Carney, Connor Mapes, Russanne D. Low, Alex Long, Anne Bowser, David Durieux, Karlene Rivera, Berj Dekramanjian, Frederic Bartumeus, Daniel Guerrero, Carrie E. Seltzer, Farhat Azam, Sriram Chellappan, John R. B. Palmer.Role of Insects in Human Society Citizen Science Approaches to Vector Surveillance. Insects 2022, 13(8), 675; https://doi.org/10.3390/insects13080675 – 27 Jul 2022
      NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Screenshot of the Global Mosquito Observations interactive dashboard that combines various types of observations from data streams into an interoperable visualization. Each color-coded dot represents a citizen scientist’s observation and can be clicked to access the associated photos and data. Share








      Details
      Last Updated Sep 03, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Science Activation Explore More
      2 min read Co-creating authentic STEM learning experiences with Latino communities


      Article


      4 days ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      6 days ago
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Researchers used an interferometer that can precisely measure gravity, magnetic fields, and other forces to study the influence of International Space Station vibrations. Results revealed that matter-wave interference of rubidium gases is robust and repeatable over a period spanning months. Atom interferometry experiments could help create high-precision measurement capabilities for gravitational, Earth, and planetary sciences.

      Using ultracold rubidium atoms, Cold Atom Lab researchers examined a three-pulse Mach–Zehnder interferometer, a device that determines phase shift variations between two parallel beams, to understand the influence of space station vibrations. Researchers note that atom sensitivities and visibility degrade due to the vibration environment of the International Space Station. The Cold Atom Lab’s interferometer uses light pulses to create a readout of accelerations, rotations, gravity, and subtle forces that could signify new physics acting on matter. Cold Atom Lab experiments serve as pathfinders for proposed space missions relying on the sustained measurement of wave-matter interference, including gravitational wave detection, dark matter detection, seismology mapping, and advanced satellite navigation. 

      Read more here.

      Researchers developed a novel method to categorize and assess the fitness of each gene in one species of bacteria, N. aromaticavorans. Results published in BMC Genomics state that core metabolic processes and growth-promoting genes have high fitness during spaceflight, likely as an adaptive response to stress in microgravity. Future comprehensive studies of the entire genome of other species could help guide the development of strategies to enhance or diminish microorganism resilience in space missions.

      The Bacterial Genome Fitness investigation grows multiple types of bacteria in space to learn more about important processes for their growth. Previous studies of microorganism communities have shown that spaceflight can induce resistance to antibiotics, lead to changes in biofilm formation, and boost cell growth in various species. N. aromaticivorans can degrade certain compounds, potentially providing benefits in composting and biofuel production during deep space missions.

      Read more here.

      Researchers burned large, isolated droplets of the hydrocarbon n-dodecane, a component of kerosene and some jet fuels, in microgravity and found that hot flames were followed by a prolonged period of cool flames at lower pressures. Results showed that hot flames were more likely to unpredictably reignite at higher pressures. Studying the burn behavior of hydrocarbons assists researchers in the development of more efficient engines and fuels that reduce fire hazards to ensure crew safety in future long-distance missions.

      The Cool Flames investigation studies the low-temperature combustion of various isolated fuel droplets. Cool flames happen in microgravity when certain fuel types burn very hot and then quickly drop to a much lower temperature with no visible flames. This investigation studies several fuels such as pure hydrocarbons, biofuels, and mixtures of pure hydrocarbons to enhance understanding of low-temperature chemistry. Improved knowledge of low-temperature burning could benefit next-generation fuels and engines.

      Read more here.
      NASA astronaut Shane Kimbrough completing the Multi-user Droplet Combustion Apparatus reconfiguration to the Cool Flames Investigation setup.NASAView the full article
    • By NASA
      A NASA-developed material made of carbon nanotubes will enable our search for exoplanets—some of which might be capable of supporting life. Originally developed in 2007 by a team of researchers led by Innovators of the Year John Hagopian and Stephanie Getty at NASA’s Goddard Space Flight Center, this carbon nanotube technology is being refined for potential use on NASA’s upcoming Habitable Worlds Observatory (HWO)—the first telescope designed specifically to search for signs of life on planets orbiting other stars.
      As shown in the figure below, carbon nanotubes look like graphene (a single layer of carbon atoms arranged in a hexagonal lattice) that is rolled into a tube. The super-dark material consists of multiwalled carbon nanotubes (i.e., nested nanotubes) that grow vertically into a “forest.” The carbon nanotubes are 99% empty space so the light entering the material doesn’t get reflected. Instead, the light enters the nanotube forest and jiggles electrons in the hexagonal lattice of carbon atoms, converting the light to heat. The ability of the carbon nanotubes to eliminate almost all light is enabling for NASA’s scientific instruments because stray light limits how sensitive the observations can be. When applied to instrument structures, this material can eliminate much of the stray light and enable new and better observations.
      Left: Artist’s conception of graphene, single and multiwalled carbon nanotube structures. Right: Scanning electron microscope image of vertically aligned multiwalled carbon nanotube forest with a section removed in the center. Credit: Delft University/Dr. Sten Vollebregt and NASA GSFC Viewing exoplanets is incredibly difficult; the exoplanets revolve around stars that are 10 billion times brighter than they are. It’s like looking at the Sun and trying to see a dim star next to it in the daytime. Specialized instruments called coronagraphs must be used to block the light from the star to enable these exoplanets to be viewed. The carbon nanotube material is employed in the coronagraph to block as much stray light as possible from entering the instrument’s detector.
      The image below depicts a notional telescope and coronagraph imaging an exoplanet. The telescope collects the light from the distant star and exoplanet. The light is then directed to a coronagraph that collimates the beam, making the light rays parallel, and then the beam is reflected off the apodizer mirror, which is used to precisely control the diffraction of light.  Carbon nanotubes on the apodizer mirror absorb the stray light that is diffracted off edges of the telescope structures, so it does not contaminate the observations.  The light is then focused on the focal plane mask, which blocks the light from the star but allows light from the exoplanet to pass.  The light gets collimated again and is then reflected off a deformable mirror to correct distortion in the image.  Finally, the light passes through the Lyot Stop, which is also coated with carbon nanotubes to remove the remaining stray light.  The beam is then focused onto the detector array, which forms the image. 
      Even with all these measures some stray light still reaches the detector, but the coronagraph creates a dark zone where only the light coming from the exoplanet can be seen. The final image on the right in the figure below shows the remaining light from the star in yellow and the light from the exoplanet in red in the dark zone.
      Schematic of a notional telescope and coronagraph imaging an exoplanet Credit: Advanced Nanophotonics/John Hagopian, LLC HWO will use a similar scheme to search for habitable exoplanets. Scientists will analyze the spectrum of light captured by HWO to determine the gases in the atmosphere of the exoplanet. The presence of water vapor, oxygen, and perhaps other gases can indicate if an exoplanet could potentially support life.
      But how do you make a carbon-nanotube-coated apodizer mirror that could be used on the HWO? Hagopian’s company Advanced Nanophotonics, LLC received Small Business Innovation Research (SBIR) funding to address this challenge.
      Carbon nanotubes are grown by depositing catalyst seeds onto a substrate and then placing the substrate into a tube-shaped furnace and heating it to 1382 degrees F, which is red hot! Gases containing carbon are then flowed into the heated tube, and at these temperatures the gases are absorbed by the metal catalyst and transform into a solution, similar to how carbon dioxide in soda water fizzes. The carbon nanotubes literally grow out of the substrate into vertically aligned tubes to form a “forest” wherever the catalyst is located.
      Since the growth of carbon nanotubes on the apodizer mirror must occur only in designated areas where stray light is predicted, the catalyst must be applied only to those areas. The four main challenges that had to be overcome to develop this process were: 1) how to pattern the catalyst precisely, 2) how to get a mirror to survive high temperatures without distorting, 3) how to get a coating to survive high temperatures and still be shiny, and 4) how to get the carbon nanotubes to grow on top of a shiny coating. The Advanced Nanophotonics team refined a multi-step process (see figure below) to address these challenges.
      Making an Apodizer Mirror for use in a coronagraph Credit: Advanced Nanophotonics/John Hagopian, LLC First a silicon mirror substrate is fabricated to serve as the base for the mirror. This material has properties that allow it to survive very high temperatures and remain flat. These 2-inch mirrors are so flat that if one was scaled to the diameter of Earth, the highest mountain would only be 2.5 inches tall!
      Next, the mirror is coated with multiple layers of dielectric and metal, which are deposited by knocking atoms off a target and onto the mirror in a process called sputtering. This coating must be reflective to direct the desired photons, but still be able to survive in the hot environment with corrosive gases that is required to grow carbon nanotubes.
      Then a material called resist that is sensitive to light is applied to the mirror and a pattern is created in the resist with a laser. The image on the mirror is chemically developed to remove the resist only in the areas illuminated by the laser, creating a pattern where the mirror’s reflecting surface is exposed only where nanotube growth is desired.
      The catalyst is then deposited over the entire mirror surface using sputtering to provide the seeds for carbon nanotube growth. A process called liftoff is used to remove the catalyst and the resist that are located where nanotubes growth is not needed. The mirror is then put in a tube furnace and heated to 1380 degrees Fahrenheit while argon, hydrogen, and ethylene gases are flowed through the tube, which allows the chemical vapor deposition of carbon nanotubes where the catalyst has been patterned. The apodizer mirror is cooled and removed from the tube furnace and characterized to make sure it is still flat, reflective where desired, and very black everywhere else.
      The Habitable Worlds Observatory will need a coronagraph with an optimized apodizer mirror to effectively view exoplanets and gather their light for evaluation. To make sure NASA has the best chance to succeed in this search for life, the mirror design and nanotube technology are being refined in test beds across the country.
      Under the SBIR program, Advanced Nanophotonics, LLC has delivered apodizers and other coronagraph components to researchers including Remi Soummer at the Space Telescope Science Institute, Eduardo Bendek and Rus Belikov at NASA Ames, Tyler Groff at NASA Goddard, and Arielle Bertrou-Cantou and Dmitri Mawet at the California Institute of Technology. These researchers are testing these components and the results of these studies will inform new designs to eventually enable the goal of a telescope with a contrast ratio of 10 billion to 1.
      Reflective Apodizers delivered to Scientists across the country Credit: Advanced Nanophotonics/John Hagopian, LLC In addition, although the desired contrast ratio cannot be achieved using telescopes on Earth, testing apodizer mirror designs on ground-based telescopes not only facilitates technology development, but helps determine the objects HWO might observe. Using funding from the SBIR program, Advanced Nanophotonics also developed transmissive apodizers for the University of Notre Dame to employ on another instrument—the Gemini Planet Imager (GPI) Upgrade. In this case the carbon nanotubes were patterned and grown on glass that transmits the light from the telescope into the coronagraph. The Gemini telescope is an 8.1-meter telescope located in Chile, high atop a mountain in thin air to allow for better viewing. Dr. Jeffrey Chilcote is leading the effort to upgrade the GPI and install the carbon nanotube patterned apodizers and Lyot Stops in the coronagraph to allow viewing of exoplanets starting next year. Discoveries enabled by GPI may also drive future apodizer designs.
      More recently, the company was awarded a Phase II SBIR contract to develop next-generation apodizers and other carbon nanotube-based components for the test beds of existing collaborators and new partners at the University of Arizona and the University of California Santa Clara.
      Tyler Groff (left) and John Hagopian (right) display a carbon nanotube patterned apodizer mirror used in the NASA Goddard Space Flight Center coronagraph test bed. Credit: Advanced Nanophotonics/John Hagopian, LLC As a result of this SBIR-funded technology effort, Advanced Nanophotonics has collaborated with NASA Scientists to develop a variety of other applications for this nanotube technology.
      A special carbon nanotube coating developed by Advanced Nanophotonics was used on the recently launched NASA Ocean Color Instrument onboard the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission that is observing both the atmosphere and phytoplankton in the ocean, which are key to the health of our planet. A carbon nanotube coating that is only a quarter of the thickness of a human hair was applied around the entrance slit of the instrument. This coating absorbs 99.5% of light in the visible to infrared and prevents stray light from reflecting into the instrument to enable more accurate measurements. Hagopian’s team is also collaborating with the Laser Interferometer Space Antenna (LISA) team to apply the technology to mitigate stray light in the European Space Agency’s space-based gravity wave mission.
      They are also working to develop carbon nanotubes for use as electron beam emitters for a project sponsored by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Program. Led by Lucy Lim at NASA Goddard, this project aims to develop an instrument to probe asteroid and comet constituents in space.
      In addition, Advanced Nanophotonics worked with researcher Larry Hess at NASA Goddard’s Detector Systems Branch and Jing Li at the NASA Ames Research Center to develop a breathalyzer to screen for Covid-19 using carbon nanotube technology. The electron mobility in a carbon nanotube network enables high sensitivity to gases in exhaled breath that are associated with disease.
      This carbon nanotube-based technology is paying dividends both in space, as we continue our search for life, and here on Earth.
      For additional details, see the entry for this project on NASA TechPort.
      PROJECT LEAD
      John Hagopian (Advanced Nanophotonics, LLC)
      SPONSORING ORGANIZATION
      SMD-funded SBIR project
      Share








      Details
      Last Updated Sep 03, 2024 Related Terms
      Astrophysics Science-enabling Technology Technology Highlights Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      4 days ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      5 days ago
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      6 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...