Members Can Post Anonymously On This Site
NASA’s Webb Findings Support Long-Proposed Process of Planet Formation
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Li Quadchart
Wei Li
University of Texas at Dallas
Internal defects are always formed in laser welding process due to the keyhole instability, molten pool collapse, and rapid solidification. The extreme lunar environment complicates the reliable implementation of welding, thereby enhancing the welding defects formation. The welding defects are critical material barriers preventing the metal components from Moon exploration. Professor Wei Li’s team will establish an integrated computational materials modelling framework to study the process-structure-property linkage of laser welding under the lunar conditions. The research is emphasized on modelling the internal defects (void, lack of fusion) formed in the lunar laser welding by fully considering the reduced gravity, large temperature change, and extreme vacuum on the Moon surface, and predicting the influence of internal defects on the material and mechanical properties of welding joint.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
By NASA
Artist’s concept of a young, newly discovered planet, exposed to observation by a warped debris disk. Credit: Robert Hurt, Caltech-IPAC. The discovery
A huge planet with a long name – IRAS 04125+2902 b – is really just a baby: only 3 million years old. And because such infant worlds are usually hidden inside obscuring disks of debris, it is the youngest planet so far discovered using the dominant method of planet detection.
Key facts
The massive planet, likely still glowing from the heat of its formation, lies in the Taurus Molecular Cloud, an active stellar nursery with hundreds of newborn stars some 430 light-years away. The cloud’s relative closeness makes it a prime target for astronomers. But while the cloud offers deep insight into the formation and evolution of young stars, their planets are usually a closed book to telescopes like TESS, the Transiting Exoplanet Survey Satellite. These telescopes rely on the “transit method,” watching for the slight dip in starlight when a planet crosses the face of its host star. But such planetary systems must be edge-on, from Earth’s vantage point, for the transit method to work. Very young star systems are surrounded by disks of debris, however, blocking our view of any potentially transiting planets.
A research team has just reported an extraordinary stroke of luck. Somehow, the outer debris disk surrounding this newborn planet, IRAS 04125+2902 b, has been sharply warped, exposing the baby world to extensive transit observations by TESS.
Details
While the warped outer disk is a great coincidence, it’s also a great mystery. Possible explanations include a migration of the planet itself, moving closer to the star and, in the process, diverging from the orientation of the outer disk – so that, from Earth, the planet’s orbit is edge-on, crossing the face of the star, but the outer disk remains nearly face-on to us. One problem with this idea: Moving a planet so far out of alignment with its parent disk would likely require another (very large) object in this system. None has been detected so far.
The system’s sun happens to have a distant stellar companion, also a possible culprit in the warping of the outer disk. The angle of the orbit of the companion star, however, matches that of the planet and its parent star. Stars and planets tend to take the gravitational path of least resistance, so such an arrangement should push the disk into a closer alignment with the rest of the system – not into a radical departure.
Another way to get a “broken” outer disk, the study authors say, would not involve a companion star at all. Stellar nurseries like the Taurus Molecular Cloud can be densely packed, busy places. Computer simulations show that rains of infalling material from the surrounding star-forming region could be the cause of disk-warping. Neither simulations nor observations have so far settled the question of whether warped or broken disks are common or rare in such regions.
Fun facts
Combining TESS’s transit measurements with another way of observing planets yields more information about the planet itself. We might call this second approach the “wobble” method. The gravity of a planet tugs its star one way, then another, as the orbiting planet makes its way around the star. And that wobble can be detected by changes in the light from the star, picked up by specialized instruments on Earth. Such “radial velocity” measurements of this planet reveal that its mass, or heft, amounts to no more than about a third of our own Jupiter. But the transit data shows the planet’s diameter is about the same. That means the planet has a comparatively low density and, likely, an inflated atmosphere. So this world probably is not a gas giant like Jupiter. Instead, it could well be a planet whose atmosphere will shrink over time. When it finally settles down, it could become a gaseous “mini-Neptune” or even a rocky “super-Earth.” These are the two most common planet types in our galaxy – despite the fact that neither type can be found in our solar system.
The discoverers
A science team led by astronomer Madyson G. Barber of the University of North Carolina at Chapel Hill published the study, “A giant planet transiting a 3 Myr protostar with a misaligned disk,” in the journal Nature in November 2024.
View the full article
-
By NASA
2 min read
NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
NASA-supported scientists have developed a new method to compute how tides affect the interiors of planets and moons. Importantly, the new study looks at the effects of body tides on objects that don’t have a perfectly spherical interior structure, which is an assumption of most previous models.
The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution. NASA/JPL-Caltech/SETI Institute Body tides refer to the deformations experienced by celestial bodies when they gravitationally interact with other objects. Think of how the powerful gravity of Jupiter tugs on its moon Europa. Because Europa’s orbit isn’t circular, the crushing squeeze of Jupiter’s gravity on the moon varies as it travels along its orbit. When Europa is at its closest to Jupiter, the planet’s gravity is felt the most. The energy of this deformation is what heats up Europa’s interior, allowing an ocean of liquid water to exist beneath the moon’s icy surface.
“The same is true for Saturn’s moon Enceladus.” says co-author Alexander Berne of CalTech in Pasadena and an affiliate at NASA’s Jet Propulsion Laboratory in Southern California. “Enceladus has an ice shell that is expected to be much more non-spherically symmetric than that of Europa.”
The body tides experienced by celestial bodies can affect how the worlds evolve over time and, in cases like Europa and Enceladus, their potential habitability for life as we know it. The new study provides a means to more accurately estimate how tidal forces affect planetary interiors.
In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa’s orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter’s position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa’s rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa’s ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist. The giant planet Jupiter is now shown to be rotating from west to east, though more slowly than its actual rate. NASA/JPL-Caltech The paper also discusses how the results of the study could help scientists interpret observations made by missions to a variety of different worlds, ranging from Mercury to the Moon to the outer planets of our solar system.
The study, “A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies,” was published in The Planetary Science Journal.
For more information on NASA’s Astrobiology Program, visit:
https://science.nasa.gov/astrobiology
-end-
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
Article
6 days ago
5 min read NASA: New Insights into How Mars Became Uninhabitable
Article
1 month ago
14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
Article
2 months ago
Share
Details
Last Updated Nov 07, 2024 Related Terms
Astrobiology View the full article
-
By NASA
Hubble Space Telescope Home NASA’s Hubble, Webb… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 6 Min Read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega
Teams of astronomers used the combined power of NASA’s Hubble and James Webb space telescopes to revisit the legendary Vega disk. Credits:
NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona) In the 1997 movie “Contact,” adapted from Carl Sagan’s 1985 novel, the lead character scientist Ellie Arroway (played by actor Jodi Foster) takes a space-alien-built wormhole ride to the star Vega. She emerges inside a snowstorm of debris encircling the star — but no obvious planets are visible.
It looks like the filmmakers got it right.
A team of astronomers at the University of Arizona, Tucson used NASA’s Hubble and James Webb space telescopes for an unprecedented in-depth look at the nearly 100-billion-mile-diameter debris disk encircling Vega. “Between the Hubble and Webb telescopes, you get this very clear view of Vega. It’s a mysterious system because it’s unlike other circumstellar disks we’ve looked at,” said Andras Gáspár of the University of Arizona, a member of the research team. “The Vega disk is smooth, ridiculously smooth.”
The big surprise to the research team is that there is no obvious evidence for one or more large planets plowing through the face-on disk like snow tractors. “It’s making us rethink the range and variety among exoplanet systems,” said Kate Su of the University of Arizona, lead author of the paper presenting the Webb findings.
[left] A Hubble Space Telescope false-color view of a 100-billion-mile-wide disk of dust around the summer star Vega. Hubble detects reflected light from dust that is the size of smoke particles largely in a halo on the periphery of the disk. The disk is very smooth, with no evidence of embedded large planets. The black spot at the center blocks out the bright glow of the hot young star.
[right] The James Webb Space Telescope resolves the glow of warm dust in a disk halo, at 23 billion miles out. The outer disk (analogous to the solar system’s Kuiper Belt) extends from 7 billion miles to 15 billion miles. The inner disk extends from the inner edge of the outer disk down to close proximity to the star. There is a notable dip in surface brightness of the inner disk from approximately 3.7 to 7.2 billion miles. The black spot at the center is due to lack of data from saturation. NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
Download this image
Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.
The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”
The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.
Hubble acquired this image of the circumstellar disk around the star Vega using the Space Telescope Imaging Spectrograph (STIS). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
Download this image
“We’re seeing in detail how much variety there is among circumstellar disks, and how that variety is tied into the underlying planetary systems. We’re finding a lot out about the planetary systems — even when we can’t see what might be hidden planets,” added Su. “There’s still a lot of unknowns in the planet-formation process, and I think these new observations of Vega are going to help constrain models of planet formation.”
Disk Diversity
Newly forming stars accrete material from a disk of dust and gas that is the flattened remnant of the cloud from which they are forming. In the mid-1990s Hubble found disks around many newly forming stars. The disks are likely sites of planet formation, migration, and sometimes destruction. Fully matured stars like Vega have dusty disks enriched by ongoing “bumper car” collisions among orbiting asteroids and debris from evaporating comets. These are primordial bodies that can survive up to the present 450-million-year age of Vega (our Sun is approximately ten times older than Vega). Dust within our solar system (seen as the Zodiacal light) is also replenished by minor bodies ejecting dust at a rate of about 10 tons per second. This dust is shoved around by planets. This provides a strategy for detecting planets around other stars without seeing them directly – just by witnessing the effects they have on the dust.
“Vega continues to be unusual,” said Wolff. “The architecture of the Vega system is markedly different from our own solar system where giant planets like Jupiter and Saturn are keeping the dust from spreading the way it does with Vega.”
Webb acquired this image of the circumstellar disk around the star Vega using the Mid-Infrared Instrument (MIRI). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
Download this image
For comparison, there is a nearby star, Fomalhaut, which is about the same distance, age and temperature as Vega. But Fomalhaut’s circumstellar architecture is greatly different from Vega’s. Fomalhaut has three nested debris belts.
Planets are suggested as shepherding bodies around Fomalhaut that gravitationally constrict the dust into rings, though no planets have been positively identified yet. “Given the physical similarity between the stars of Vega and Fomalhaut, why does Fomalhaut seem to have been able to form planets and Vega didn’t?” said team member George Rieke of the University of Arizona, a member of the research team. “What’s the difference? Did the circumstellar environment, or the star itself, create that difference? What’s puzzling is that the same physics is at work in both,” added Wolff.
First Clue to Possible Planetary Construction Yards
Located in the summer constellation Lyra, Vega is one of the brightest stars in the northern sky. Vega is legendary because it offered the first evidence for material orbiting a star — presumably the stuff for making planets — as potential abodes of life. This was first hypothesized by Immanuel Kant in 1775. But it took over 200 years before the first observational evidence was collected in 1984. A puzzling excess of infrared light from warm dust was detected by NASA’s IRAS (Infrared Astronomy Satellite). It was interpreted as a shell or disk of dust extending twice the orbital radius of Pluto from the star.
In 2005, NASA’s infrared Spitzer Space Telescope mapped out a ring of dust around Vega. This was further confirmed by observations using submillimeter telescopes including Caltech’s Submillimeter Observatory on Mauna Kea, Hawaii, and also the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and ESA’s (European Space Agency’s) Herschel Space Telescope, but none of these telescopes could see much detail. “The Hubble and Webb observations together provide so much more detail that they are telling us something completely new about the Vega system that nobody knew before,” said Rieke.
Two papers (Wolff et al. and Su et. al.) from the Arizona team will be published in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Explore More:
Finding Planetary Construction Zones
The science paper by Schuyler Wolff et al., PDF (3.24 MB)
The science paper by Kate Su et al., PDF (2.10 MB)
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Facebook logo @NASAWebb @NASAWebb Instagram logo @NASAWebb Media Contacts:
Claire Andreoli (claire.andreoli@nasa.gov), Laura Betz (laura.e.betz@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard, Christine Pulliam
Space Telescope Science Institute, Baltimore, MD
Share
Details
Last Updated Nov 01, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars Keep Exploring Discover More Topics From Hubble and Webb
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
James Webb Space Telescope
Space Telescope
Hubble vs. Webb
Hubble Focus: Strange New Worlds
NASA’s Hubble Space Telescope team has released a new edition in the Hubble Focus e-book series, called “Hubble Focus: Strange…
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A SWOT data visualization shows water on the northern side of Greenland’s Dickson Fjord at higher levels than on the southern side on Sept. 17, 2023. A huge rockslide into the fjord the previous day led to a tsunami lasting nine days that caused seismic rumbling around the world. NASA Earth Observatory Data from space shows water tilting up toward the north side of the Dickson Fjord as it sloshed from south to north and back every 90 seconds for nine days after a 2023 rockslide.
The international Surface Water and Ocean Topography (SWOT) satellite mission, a collaboration between NASA and France’s CNES (Centre National d’Études Spatiales), detected the unique contours of a tsunami that sloshed within the steep walls of a fjord in Greenland in September 2023. Triggered by a massive rockslide, the tsunami generated a seismic rumble that reverberated around the world for nine days. An international research team that included seismologists, geophysicists, and oceanographers recently reported on the event after a year of analyzing data.
The SWOT satellite collected water elevation measurements in Dickson Fjord on Sept. 17, 2023, the day after the initial rockslide and tsunami. The data was compared with measurements made under normal conditions a few weeks prior, on Aug. 6, 2023.
In the data visualization (above), colors toward the red end of the scale indicate higher water levels, and blue colors indicate lower-than-normal levels. The data suggests that water levels at some points along the north side of the fjord were as much as 4 feet (1.2 meters) higher than on the south.
“SWOT happened to fly over at a time when the water had piled up pretty high against the north wall of the fjord,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Seeing the shape of the wave — that’s something we could never do before SWOT.”
In a paper published recently in Science, researchers traced a seismic signal back to a tsunami that began when more than 880 million cubic feet of rock and ice (25 million cubic meters) fell into Dickson Fjord. Part of a network of channels on Greenland’s eastern coast, the fjord is about 1,772 feet (540 meters) deep and 1.7 miles (2.7 kilometers) wide, with walls taller than 6,000 feet (1,830 meters).
Far from the open ocean, in a confined space, the energy of the tsunami’s motion had limited opportunity to dissipate, so the wave moved back and forth about every 90 seconds for nine days. It caused tremors recorded on seismic instruments thousands of miles away.
From about 560 miles (900 kilometers) above, SWOT uses its sophisticated Ka-band Radar Interferometer (KaRIn) instrument to measure the height of nearly all water on Earth’s surface, including the ocean and freshwater lakes, reservoirs, and rivers.
“This observation also shows SWOT’s ability to monitor hazards, potentially helping in disaster preparedness and risk reduction,” said SWOT program scientist Nadya Vinogradova Shiffer at NASA Headquarters in Washington.
It can also see into fjords, as it turns out.
“The KaRIn radar’s resolution was fine enough to make observations between the relatively narrow walls of the fjord,” said Lee-Lueng Fu, the SWOT project scientist. “The footprint of the conventional altimeters used to measure ocean height is too large to resolve such a small body of water.”
More About SWOT
Launched in December 2022 from Vandenberg Space Force Base in California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center in Florida, managed the associated launch services.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-153
Share
Details
Last Updated Oct 31, 2024 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
6 min read Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever
Article 7 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
Article 1 day ago 2 min read NASA Brings Drone and Space Rover to Air Show
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.