Jump to content

Recommended Posts

Posted
low_STSCI-H-p0801a-k-1340x520.png

What superficially resembles a giant moth floating in space is giving astronomers new insight into the formation and evolution of planetary systems. This is not your typical flying insect. It has a wingspan of about 22 billion miles. The wing- like structure is actually a dust disk encircling the nearby, young star HD 61005, dubbed "The Moth." Its shape is produced by starlight scattering off dust. Dust disks around roughly 100-million-year-old stars like HD 61005 are typically flat structures where planets can form. But images taken with NASA's Hubble Space Telescope of "The Moth" are showing that some disks sport surprising shapes.

The Hubble image was taken with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The black disk in the center of the image is a coronagraphic hole in the NICMOS camera that blocks out most of the central star's light so that astronomers can see details in the surrounding dust disk.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Deputy Administrator Pam Melroy and Deputy Associate Administrator Casey Swails visit the American Airlines Integrated Operations Center near Dallas Fort Worth International Airport on a recent trip to see NASA’s digital tools for aviation efficiency in operational use.American Airlines It’s the holiday season — which means many are taking to the skies to join their loved ones.
      If you’ve ever used an app to navigate on a road trip, you’ve probably noticed how it finds you the most efficient route to your destination, even before you depart. To that end, NASA has been working to make flight departures out of major international airports more efficient — thereby saving fuel and reducing delays — in close collaboration with the aviation industry and the Federal Aviation Administration (FAA). 
      The savings are possible thanks to a NASA-developed tool called Collaborative Digital Departure Rerouting. 
      This tool determines where potential time savings could be gained by slightly altering a departure route, based on existing data about delays. The software presents its proposed more-efficient route in real time to an airline, who can then decide whether or not to use it and coordinate with air traffic control through a streamlined digital process. 
      The capability is being tested thoroughly at Dallas Fort Worth International Airport and Love Field Airport in Texas in collaboration with several major air carriers, including American Airlines, Delta, JetBlue, Southwest, and United. 
      Now, these capabilities are expanding out of the Dallas area to other major airports in Houston for further research. 
      “We’re enabling the use of digital services to greatly improve aviation efficiency,” said Shivanjli Sharma, manager of NASA’s Air Traffic Management — eXploration project which oversees the research on aviation services. “Streamlining airline operations, reducing emissions, and saving time are all part of making an efficient next-generation airspace system.” 
      NASA / Maria Werries The animation above shows the savings Collaborative Digital Departure Rerouting is responsible for at just a single airport. As the tool is expanded to be used at other airports, the savings begin to add up even more. 
      It’s all part of NASA’s vision for transforming the skies above our communities to be more sustainable, efficient, safer, and quieter. 
      Collaborative Digital Departure Rerouting is one of a series of new cloud-based digital air traffic management tools NASA and industry plan to develop and demonstrate as part of the agency’s Sustainable Flight National Partnership. These new flight management capabilities will contribute to the partnership’s goal of accelerating progress towards aviation achieving net-zero greenhouse gas emissions by 2050. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAAero@NASA_es @NASA@NASAAero@NASA_es Instagram logo @NASA@NASAAero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 19 mins ago 4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
      Article 2 days ago 8 min read 2024 in Review: Highlights from NASA in Silicon Valley 
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program Ames Research Center Green Aviation Tech Sustainable Flight National Partnership View the full article
    • By NASA
      A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
      As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      “The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
      Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
      This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
      “Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
      The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include: 
      Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji    
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis View the full article
    • By European Space Agency
      Video: 00:11:10 In 2024, ESA continued to drive Europe’s innovation and excellence in space, equipping the continent with advanced tools and knowledge to address global and local challenges. The year saw pioneering missions, cutting-edge satellites and the pivotal restoration of Europe’s independent access to space. 
      The first Ariane 6 launch was perhaps ‘the’ highlight of the year but it was only one of many achievements. We saw the last Vega launch and then the return to flight of Vega-C, the more powerful, upgraded version carrying Sentinel-1C.
      Far away in our Solar System, the ESA/JAXA BepiColombo spacecraft performed twoMercury flybys in 2024, needed so that it can enter orbit around Mercury in 2026. Juice also performed a crucial gravity assist, this time becoming the first spacecraft to conduct a Moon-Earth double flyby on its way to Jupiter. 
      Twenty years after ESA’s Rosetta was launched and 10 years since its historic arrival at the comet 67P/Churyumov-Gerasimenko, we launched another spacecraft to a small body, the Hera planetary defence mission to investigate asteroid Dimorphos.
      2024 was an important year for Europe’s Galileo constellation which continued to expand with the launch of four new satellites and an updated Galileo ground system. The year also saw the launch of ESA’s Proba-3 mission: two precision formation-flying satellites forming a solar coronagraph to study the Sun’s faint corona. 
      In human spaceflight, Europe continues to contribute to science from the ISS as Andreas Mogensen’s Huginn mission continued into 2024. Andreas even met up in space with ESA project astronaut Marcus Wandt who was launched on his Muninn mission, making it the first time two Scandinavians were in space together. 
      Meanwhile the latest class of ESA astronauts completed basic training and graduated in April. Two of them, Sophie and Raphaël, were then assigned to long-duration missions to the ISS in 2026.
      We made crucial steps for Europe in gaining access to the Moon: the inauguration of our LUNA facility with DLR, and the delivery of a third European Service Module for NASA’s Orion spacecraft as part of the Artemis programme.
      Europe is also contributing to the international Lunar Gateway and developing and ESA lunar lander called Argonaut. These landers will rely on ESA Moonlight, the programme to establish Europe’s first dedicated satellite constellation for lunar communication and navigation.
      As 2024 draws to a close, ESA’s achievements this year have reinforced Europe’s role in space. ESA’s journey continues to explore new frontiers, shaping the space landscape for generations to come.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Seen at the center of this image, NASA’s retired InSight Mars lander was captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera on Oct. 23, 2024.NASA/JPL-Caltech/University of Arizona New images taken from space show how dust on and around InSight is changing over time — information that can help scientists learn more about the Red Planet.
      NASA’s Mars Reconnaissance Orbiter (MRO) caught a glimpse of the agency’s retired InSight lander recently, documenting the accumulation of dust on the spacecraft’s solar panels. In the new image taken Oct. 23 by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera, InSight’s solar panels have acquired the same reddish-brown hue as the rest of the planet.
      After touching down in November 2018, the lander was the first to detect the Red Planet’s marsquakes, revealing details of the crust, mantle, and core in the process. Over the four years that the spacecraft collected science, engineers at NASA’s Jet Propulsion Laboratory in Southern California, which led the mission, used images from InSight’s cameras and MRO’s HiRISE to estimate how much dust was settling on the stationary lander’s solar panels, since dust affected its ability to generate power.
      NASA retired InSight in December 2022, after the lander ran out of power and stopped communicating with Earth during its extended mission. But engineers continued listening for radio signals from the lander in case wind cleared enough dust from the spacecraft’s solar panels for its batteries to recharge. Having detected no changes over the past two years, NASA will stop listening for InSight at the end of this year.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s InSight Mars lander acquires the same reddish-brown hue as the rest of the planet in a set of images from 2018 to 2024 that were captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera.NASA/JPL-Caltech/University of Arizona Scientists requested the recent HiRISE image as a farewell to InSight, as well as to monitor how its landing site has changed over time.
      “Even though we’re no longer hearing from InSight, it’s still teaching us about Mars,” said science team member Ingrid Daubar of Brown University in Providence, Rhode Island. “By monitoring how much dust collects on the surface — and how much gets vacuumed away by wind and dust devils — we learn more about the wind, dust cycle, and other processes that shape the planet.”
      Dust Devils and Craters
      Dust is a driving force across Mars, shaping both the atmosphere and landscape. Studying it helps scientists understand the planet and engineers prepare for future missions (solar-powered and otherwise), since dust can get into sensitive mechanical parts.
      When InSight was still active, scientists matched MRO images of dust devil tracks winding across the landscape with data from the lander’s wind sensors, finding these whirling weather phenomena subside in the winter and pick up again in the summer.
      The imagery also helped with the study of meteoroid impacts on the Martian surface. The more craters a region has, the older the surface there is. (This isn’t the case with Earth’s surface, which is constantly recycled as tectonic plates slide over one another.) The marks around these craters fade with time. Understanding how fast dust covers them helps to ascertain a crater’s age.
      Another way to estimate how quickly craters fade has been studying the ring of blast marks left by InSight’s retrorocket thrusters during landing. Much more prominent in 2018, those dark marks are now returning to the red-brown color of the surrounding terrain.
      HiRISE has captured many other spacecraft images, including those of NASA’s Perseverance and Curiosity rovers, which are still exploring Mars, as well as inactive missions, like the Spirit and Opportunity rovers and the Phoenix lander.
      “It feels a little bittersweet to look at InSight now. It was a successful mission that produced lots of great science. Of course, it would have been nice if it kept going forever, but we knew that wouldn’t happen,” Daubar said.
      More About MRO and InSight
      The University of Arizona, in Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. A division of Caltech in Pasadena, California, JPL manages the MRO project and managed InSight for NASA’s Science Mission Directorate, Washington.
      The InSight mission was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
      A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
      For more about the missions:
      https://science.nasa.gov/mission/insight
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-175
      Share
      Details
      Last Updated Dec 16, 2024 Related Terms
      InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Mars Reconnaissance Orbiter (MRO) Radioisotope Power Systems (RPS) Explore More
      5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 4 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 4 days ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...