Jump to content

Advancing Technology for Aeronautics on Earth


Recommended Posts

  • Publishers
Posted

6 min read

Advancing Technology for Aeronautics on Earth

Artist concept of NASA's Quiet SuperSonic Technology jet in flight.

The future of flight looks very exciting, and the public is helping NASA see it more clearly. For more than a century, NASA and its predecessor, the National Advisory Committee for Aeronautics, have been the global leader in aeronautics research. NASA’s innovative contributions to aviation benefit the U.S. economy, air transportation system, aviation industry, and passengers and businesses who rely on flight every day. NASA is with you when you fly, and the agency continues to revolutionize research and development activities for the aviation industry of tomorrow.  

NASA’s public prize competitions, challenges, and crowdsourcing activities illuminate what is on the horizon for air and aviation on Earth. These research and development challenges yield innovative ideas, including future forecasts to inform strategies for the next era of aviation, algorithms to predict runway traffic changes at U.S. airports, and more. 

Future Forecasts to Prepare for the Next Era of Aeronautics

NASA’s vision for aeronautical research for the next 25 years and beyond encompasses a range of technologies for safe, efficient, flexible, and environmentally sustainable air transportation. To prepare for this future, NASA’s Convergent Aeronautics Solutions project conducted a challenge that prompted the public to imagine the state of aviation in 25 years. 

NASA’s Future-Scaping Our Skies Challenge asked participants to predict and describe future aviation using timelines and storylines, including data sources, references, and multimedia illustrations when possible. The contest awarded $21,000 to nine top winners. Judges evaluated the contest submissions based on their descriptions of possible future scenarios and the key events and trends leading to the proposed outcomes. 

According to Team Sparkletron, which placed first in the competition, advanced computation and machine learning might be modeling changes in aviation and the future of aviation better than ever. Such models could apply to commercial and personal flying applications.

Ground Control Software for Unmanned Aircraft Systems

In 2021, more than 873,000 Unmanned Aircraft Systems (UAS)—also known as drones—were registered to fly in the United States. With a host of potential applications, including delivery of products, search and rescue, and agricultural monitoring, drone numbers will likely rise.1

Working in partnership with the Federal Aviation Administration for more than 25 years, NASA is researching technologies for traffic management of drones. A large portion of air traffic management is ground control, which manages aircraft on the runways. To help develop ground control software for small drones, NASA asked the public to modify and enhance an existing application through an Unmanned Aircraft Systems Ground Control Station Software Challenge series. During the course of about a year, a series of challenges received 92 entries from 58 countries. Altogether, NASA awarded a total of $30,700 to 47 winners for the development of ground control software for small drones.

Two NASA personnel holding the drone on either end.
Personnel from NASA’s Langley Research Center in Virginia lent a drone, and their expertise in flying it, to gather weather data as part of the Learjet 25 flights near Niagara Falls International Airport in New York managed by the team from NASA’s Glenn Research Center in Cleveland.
NASA / Jef Janis

Algorithms to Predict Runway Traffic Changes at U.S. Airports

The National Airspace System (NAS) is undergoing modernization to make flying safer, more efficient, and more predictable2—and NASA is involved in this transformation. The NAS is made up of more than 29 million square miles that include airspace, air navigation facilities, airports and landing areas, and more.

To enable more cohesive decision-making in current and future NAS operations, NASA is building a cloud-based Digital Information Platform (DIP) for advanced data-driven digital services. Through DIP, NASA identified a need for algorithms that can accurately predict changes in the configuration of runways at U.S. airports. Runway configuration, or the direction that traffic is moving on runways, can adjust multiple times per day and can significantly impact flight delays and decisions across the NAS.3

The goal of the Run-way Functions: Predict Reconfigurations at U.S. Airports Challenge was to design algorithms to automatically predict airport configuration changes from real-time data sources. Submissions tested using a mock data set of 10 airports, and judges scored the algorithms based on how the predictions compared to the ground truth. The top four solutions, which came from New York University; Massachusetts Institute of Technology, Cambridge; University of Maryland, College Park; and Pennsylvania State University, State College, won awards totaling $40,000.

NASA's Digital Information Platform project's Collaborative Digital Departure Reroute modeling tools
NASA’s Digital Information Platform project’s Collaborative Digital Departure Reroute modeling tools are displayed at the NASA/FAA North Texas Research Station.
NASA photo by James Blair

An App to Uncover How People Operate Autonomous Systems

Human-autonomy teaming (HAT) aims to understand how people work together with autonomous systems like drones. For example, how long can a person safely operate a drone piloted by remote control or onboard computers? Can one person effectively operate multiple autonomous vehicles at once? 

NASA opened the Human-Autonomy Teaming Task Battery (HATTB) App contest to develop software to run an existing battery of tasks that simulate pilot responsibilities during flight. The potential app could support researchers in evaluating the performance of research participants while participants monitored virtual autonomous machines and performed other tasks simultaneously. More than $160,000 was awarded to 33 contest winners. 

The HATTB app could help NASA and other researchers understand how well people and autonomous systems communicate and collaborate. The app is incorporated into a study by students at Old Dominion University in Norfolk, Virginia, to examine the effect of time on HAT.4

A More Efficient Wind Tunnel Design to Minimize Downtime

NASA facilities are home to a variety of wind tunnels for testing aircraft and spacecraft. By simulating the movement of air around vehicles during flight, NASA uses wind tunnels to test new vehicle shapes, materials, and other design elements. 

acd19-0157-015.jpg?w=2048
Engineers discuss the preliminary data transferred from the 11×11-foot Transonic Test Section of the Unitary Plan Wind Tunnel for processing at the NASA Advanced Supercomputing (NAS) facility and visualized at the NAS Hyperwall facility in near real-time.
NASA Ames / Dominic Hart

The NASA concept study, “New Wind Tunnel Landscape,” aims to develop new options to support wind tunnel testing in the next 20-50 years. One opportunity for advancement is the test section—the area where researchers place the components, exposing them to airflow. When preparing the test section for a new model, the wind tunnel is unusable due to the time-consuming process.

To address the downtime, NASA called on the public through the New Transonic Wind Tunnel Test Section Challenge. This $7,000 competition sought new designs for a wind tunnel facility with test sections capable of efficient, rapid reconfiguration. 

Winning designs addressed the inefficiency of data and instrumentation system connections that delay reconfiguring the test section, ground-level carts to simplify transferring models to and from the test section, and modular test section containers that include everything needed for a quick swap. 

Endnotes

[1] https://www3.nasa.gov/sites/default/files/atoms/files/utm-factsheet-11-05-15.pdf

[2] https://www.faa.gov/nextgen

[3] https://www.drivendata.org/competitions/89/competition-nasa-airport-configuration/

[4] https://sites.google.com/odu.edu/odu-reu-transportation/research-projects

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora
      High above Earth’s poles, intense electrical currents called electrojets flow through the upper atmosphere when auroras glow in the sky. These auroral electrojets push about a million amps of electrical charge around the poles every second. They can create some of the largest magnetic disturbances on the ground, and rapid changes in the currents can lead to effects such as power outages. In March, NASA plans to launch its EZIE (Electrojet Zeeman Imaging Explorer) mission to learn more about these powerful currents, in the hopes of ultimately mitigating the effects of such space weather for humans on Earth.
      Results from EZIE will help NASA better understand the dynamics of the Earth-Sun connection and help improve predictions of hazardous space weather that can harm astronauts, interfere with satellites, and trigger power outages.
      The EZIE mission includes three CubeSats, each about the size of a carry-on suitcase. These small satellites will fly in a pearls-on-a-string formation, following each other as they orbit Earth from pole to pole about 350 miles (550 kilometers) overhead. The spacecraft will look down toward the electrojets, which flow about 60 miles (100 kilometers) above the ground in an electrified layer of Earth’s atmosphere called the ionosphere.
      During every orbit, each EZIE spacecraft will map the electrojets to uncover their structure and evolution. The spacecraft will fly over the same region 2 to 10 minutes apart from one another, revealing how the electrojets change.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will use three CubeSats to map Earth’s auroral electrojets — intense electric currents that flow high above Earth’s polar regions when auroras glow in the sky. As the trio orbits Earth, each satellite will use four dishes pointed at different angles to measure magnetic fields created by the electrojets. NASA/Johns Hopkins APL/Steve Gribben Previous ground-based experiments and spacecraft have observed auroral electrojets, which are a small part of a vast electric circuit that extends 100,000 miles (160,000 kilometers) from Earth to space. But for decades, scientists have debated what the overall system looks like and how it evolves. The mission team expects EZIE to resolve that debate. 
      “What EZIE does is unique,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE is the first mission dedicated exclusively to studying the electrojets, and it does so with a completely new measurement technique.”
      EZIE is the first mission dedicated exclusively to studying the electrojets.
      Larry Kepko
      EZIE mission scientist, NASA’s Goddard Space Flight Center
      This technique involves looking at microwave emission from oxygen molecules about 10 miles (16 kilometers) below the electrojets. Normally, oxygen molecules emit microwaves at a frequency of 118 Gigahertz. However, the electrojets create a magnetic field that can split apart that 118 Gigahertz emission line in a process called Zeeman splitting. The stronger the magnetic field, the farther apart the line is split.
      Each of the three EZIE spacecraft will carry an instrument called the Microwave Electrojet Magnetogram to observe the Zeeman effect and measure the strength and direction of the electrojets’ magnetic fields. Built by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, each of these instruments will use four antennas pointed at different angles to survey the magnetic fields along four different tracks as EZIE orbits.
      The technology used in the Microwave Electrojet Magnetograms was originally developed to study Earth’s atmosphere and weather systems. Engineers at JPL had reduced the size of the radio detectors so they could fit on small satellites, including NASA’s TEMPEST-D and CubeRRT missions, and improved the components that separate light into specific wavelengths.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will investigate Earth’s auroral electrojets, which flow high above Earth’s polar regions when auroras (northern and southern lights) glow. By providing unprecedented measurements of these electrical currents, EZIE will answer decades-old mysteries. Understanding these currents will also improve scientists’ capabilities for predicting hazardous space weather. NASA/Johns Hopkins APL The electrojets flow through a region that is difficult to study directly, as it’s too high for scientific balloons to reach but too low for satellites to dwell.
      “The utilization of the Zeeman technique to remotely map current-induced magnetic fields is really a game-changing approach to get these measurements at an altitude that is notoriously difficult to measure,” said Sam Yee, EZIE’s principal investigator at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.
      The mission is also including citizen scientists to enhance its research, distributing dozens of EZIE-Mag magnetometer kits to students in the U.S. and volunteers around the world to compare EZIE’s observations to those from Earth. “EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground,” said Nelli Mosavi-Hoyer, EZIE project manager at APL.
      EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground.
      Nelli Mosavi-Hoyer
      EZIE project manager, Johns Hopkins Applied Physics Laboratory
      The EZIE spacecraft will launch aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California as part of the Transporter-13 rideshare mission with SpaceX via launch integrator Maverick Space Systems.
      The mission will launch during what’s known as solar maximum — a phase during the 11-year solar cycle when the Sun’s activity is stronger and more frequent. This is an advantage for EZIE’s science.
      “It’s better to launch during solar max,” Kepko said. “The electrojets respond directly to solar activity.”
      The EZIE mission will also work alongside other NASA heliophysics missions, including PUNCH (Polarimeter to Unify the Corona and Heliosphere), launching in late February to study how material in the Sun’s outer atmosphere becomes the solar wind.
      According to Yee, EZIE’s CubeSat mission not only allows scientists to address compelling questions that have not been able to answer for decades but also demonstrates that great science can be achieved cost-effectively.
      “We’re leveraging the new capability of CubeSats,” Kepko added. “This is a mission that couldn’t have flown a decade ago. It’s pushing the envelope of what is possible, all on a small satellite. It’s exciting to think about what we will discover.”
      The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. APL leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats.
      by Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Header Image:
      An artist’s concept shows the three EZIE satellites orbiting Earth.
      Credits: NASA/Johns Hopkins APL/Steve Gribben
      Share








      Details
      Last Updated Feb 25, 2025 Related Terms
      Heliophysics Auroras EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Missions Small Satellite Missions The Sun Explore More
      6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 


      Article


      4 days ago
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      4 days ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 Min Read Five Facts About NASA’s Moon Bound Technology
      A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface. 
      As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.  
      The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.

      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!  

      1. Lunar South Pole Exploration 
      IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.  
      An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations 

      NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.  
      Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.   
      The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots

      Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. 
      The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 
      Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication
      The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

      Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together
      NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.  
      NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.  
      NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.  
      Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.  

      A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines
      Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More
      3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions 
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Polar Resources Ice Mining Experiment 1 (PRIME-1)
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      NASA Partners with American Companies on Key Moon, Exploration Tech
      NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space…
      Share
      Details
      Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related Terms
      Space Technology Mission Directorate Artemis Commercial Lunar Payload Services (CLPS) Game Changing Development Program Kennedy Space Center Lunar Surface Innovation Initiative Missions NASA Headquarters Research and Technology at Kennedy Space Center Science Mission Directorate
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) and the International Committee of the Red Cross (ICRC) have signed a Memorandum of Intent (MoI) to harness space technology for humanitarian assistance worldwide. The partnership will combine ESA's space expertise with ICRC's humanitarian reach to develop space-enabled solutions that can help protect and assist communities affected by disasters and conflicts across Europe and beyond.
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-1 radar image shows Tokyo and its metropolitan area, the largest urban agglomeration in the world. View the full article
    • By NASA
      Credit: NASA NASA’s Small Spacecraft Systems Virtual Institute (S3VI) is pleased to announce the official release of the highly anticipated 2024 State-of-the-Art Small Spacecraft Technology report. This significant accomplishment was made possible by the contributions of numerous dedicated people across NASA who graciously supported the preparation of the document as authors and reviewers. We also want to extend our gratitude to all the companies, universities, and organizations that provided content for this report.
      The 2024 report can be found online at https://www.nasa.gov/smallsat-institute/sst-soa. The report is also available in PDF format as a single document containing all report content as well as individual chapters available on their respective chapter webpages. This 2024 edition reflects updates in several chapters to include: the Formation Flying and Rendezvous and Proximity Operations section within the “Guidance, Navigation, and Control” chapter; the Additive Manufacturing section within the “Structures, Materials, and Mechanisms” chapter; the Free Space Optical Communications section within the “Communications” chapter; and the Hosted Orbital Services section within the “Complete Spacecraft Platforms” chapter.
      As in previous editions, the report contains a general overview of current state-of-the-art SmallSat technologies and their development status as discussed in open literature. The report is not intended to be an exhaustive representation of all technologies currently available to the small spacecraft community, nor does the inclusion of technologies in the report serve as an endorsement by NASA. Sources of publicly available date commonly used as sources in the development of the report include manufacturer datasheets, press releases, conference papers, journal papers, public filings with government agencies, and news articles. Readers are highly encouraged to reach out to companies for further information regarding the performance and maturity of described technologies of interest. During the report’s development, companies were encouraged to release test information and flight data when possible so it may be appropriately captured. It should be noted that technology maturity designations may vary with change to payload, mission requirements, reliability considerations, and the associated test/flight environment in which performance was demonstrated.
      Suggestions or corrections to the 2024 report toward a subsequent edition, should be submitted to the NASA Small Spacecraft Systems Virtual Institute Agency-SmallSat-Institute@mail.nasa.gov for consideration prior to the publication of the future edition. When submitting suggestions or corrections, please cite appropriate publicly accessible references. Private correspondence is not considered an adequate reference. Efforts are underway for the 2025 report and organizations are invited to submit technologies for consideration for inclusion by August 1, 2025.
      NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds the Small Spacecraft Systems Virtual Institute. 
      View the full article
  • Check out these Videos

×
×
  • Create New...