Jump to content

Reaching New Frontiers in Science Supported by Public Participation


Recommended Posts

  • Publishers
Posted

8 min read

Reaching New Frontiers in Science Supported by Public Participation

Image representing a round star colorized with bands of purple and red against a black background with white stars
A brown dwarf roaming the Milky Way galaxy. Image by citizen scientist/artist William Pendrill.
Credit: William Pendrill

NASA’s Science Mission Directorate seeks knowledge and answers to profound questions that impact all people. Through competitions, challenges, crowdsourcing, and citizen science activities, NASA collaborates with the public to make scientific discoveries that help us better understand our planet and the space beyond. Multiple NASA science projects were supported through public participation in Fiscal Years 2021 and 2022, spanning pursuits in astrophysics, Earth science, heliophysics,1 and more.

Astrophysics

NASA challenges in astrophysics seek to uncover new information about the origin, structure, evolution, and future of the universe, as well as other worlds outside our solar system.

Seeking potential planets in the backyard of our solar system, NASA invited the public to examine data from the Wide-field Infrared Survey Explorer (WISE) mission to discern moving celestial bodies. Human eyes are needed for the task because anomalies in the images often fool image processing technologies. The WISE mission continues to collect data, and the Backyard Worlds: Planet 9 citizen science project is still ongoing. But the project has discovered so far more than 3500 brown dwarfs (balls of gas too small to be considered stars), and one notable citizen scientist himself found 34 ultracool brown dwarfs with companions, now published in The Astronomical Journal.

To understand stars better, a citizen science project called Disk Detective 2.0 was launched in 2020 to evaluate disks, or belts, of material around stars. The original 2014 project resulted in the discovery of the longest-lived disks that form planets—dubbed “Peter Pan” disks—as well as the discovery of the youngest nearby disk around a brown dwarf. The relaunch offered a new batch of 150,000 stars in infrared wavelengths from NASA’s WISE mission and other data. As of May 2023, more than 12,000 volunteers had contributed to the project and 14 of those co-authored scientific papers based on their findings.

The Hybrid Observatory for Earth-like Exoplanets (HOEE) is a concept for a mission that would combine a ground-based telescope with a space-based starshade to enable better views of exoplanets from Earth.  
The Hybrid Observatory for Earth-like Exoplanets (HOEE) is a concept for a mission that would combine a ground-based telescope with a space-based starshade to enable better views of exoplanets from Earth.  
As part of early-stage study of this concept, NASA invited the public to develop 3D computer models of a lightweight starshade. Requirements for the starshade design included compact packaging, successful deployment in orbit, and a low-mass structure capable of maintaining its shape and alignment using as little spacecraft fuel as possible. The Ultralight Starshade Structural Design Challenge received 60 entries, and the top five shared a $7,000 prize. First place combined inflatable tubes for compression structures and cables for tension.  

Artist rendering of a gold starsahde fully deployed in space.
The Ultralight Starshade Structural Design Challenge asked participants to develop a lightweight starshade structure that could be used as part of the Hybrid Observatory for Earth-like Exoplanets (HOEE) concept

Earth Science

One goal of NASA’s Earth science pursuits is to map the connections between Earth’s vital processes and the climate effects of natural and human-caused changes. Multiple competitions are aiding our understanding of these interconnected systems.

A worldwide program called Global Learning and Observation to Benefit the Environment (GLOBE) has brought educators and students together since 1995, promoting science and learning about the environment. As one of the partner organizations for the program, NASA sponsored the NASA GLOBE Trees Challenge 2022: Trees in a Changing Climate to gather tree height observations. The data collected is compared with space-based observation systems to track tree height and growth rate as an indicator of ecosystem health. Volunteers from around the world have amassed more than 4,700 tree-height observations from over 1,500 locations in 50 countries.

A similar data-gathering effort—the Cooperative Open Online Landslide Repository (COOLR)—utilizes a web-based platform developed by NASA to share reports of landslides. The repository’s data is validating a model in development at NASA’s Goddard Space Flight Center in Greenbelt Maryland, the Landslide Hazard Assessment for Situational Awareness (LHASA), to map areas of potential landslide hazard in real-time. LHASA incorporates landslide inventories from people around the world in a machine-learning framework to estimate the relative probability of landslide occurrence.

To develop more accurate air quality data products from NASA satellite missions, a public competition called NASA Airathon: Predict Air Quality2 asked participants to develop algorithms for estimating daily levels of surface-level air pollutants on Earth. Using NASA satellite data, model outputs, and ground measurements, the public estimated daily levels of particulate matter (PM) and nitrogen dioxide (NO2) across urban areas in the U.S., India, and Taiwan—all of which have readily available satellite data. The contest generated more than 1,200 submissions from over 1,000 participants and awarded $25,000 in prizes.

A coral reef in American Samoa, one of the locations where researchers from the Laboratory for Advanced Sensing went on deployment to collect data using fluid-lensing instruments.
The ocean: it’s Earth’s largest ecosystem and the habitat for coral – one of the planet’s most unique and oldest life forms.

While the concept for an iPad game called NeMO-Net could be applied to the search for life across the universe, the current application is assessing the health of coral reefs. Players help NASA classify coral reefs by painting 3D and 2D images of coral captured using the NASA FluidCam instrument, the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion. Data from the painted images feeds into NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. With 43,000 unique downloads of the game, there have been 71,000 classifications, of which 56,400 have been reviewed and confirmed by NASA.

Planetary Science

NASA’s spacecraft, which arrived at Jupiter in 2016, continues to explore the planet and its satellites with a suite of scientific instruments and a camera called JunoCam. The camera takes visible frequency images of Jupiter’s polar regions and its moons.  Via the project website, citizen scientists create images from the raw JunoCam data and post their creations on the Juno website and social media platforms. Early during the prime mission, the project engaged with the public in an online voting campaign to plan image-taking during orbital passes around Jupiter (“perijoves”), but the effort was abandoned after the transition to the 53 day–orbit mission due to unfavorable evolution of the approach geometry.

Ideally, when a space rover lands on Mars, it will know where it is safe to drive, land, sleep, and hibernate—without any guidance from a human operator. An early step in developing this capability, AI4Mars, invited the public to label images of Mars terrain taken by the Curiosity rover. The goal is to train a machine learning algorithm to improve the rover’s ability to identify and avoid hazardous terrain, which is essential for autonomous exploration. Over 16,000 volunteers completed more than 632,000 classifications, and a model developed using the data has a total accuracy of 91%.

A self-portrait of NASA's Curiosity rover taken on Sol 2082 (June 15, 2018). A Martian dust storm has reduced sunlight and visibility at the rover's location in Gale Crater.
A self-portrait of NASA’s Curiosity rover taken on Sol 2082 (June 15, 2018). A Martian dust storm has reduced sunlight and visibility at the rover’s location in Gale Crater. Self-portraits are created using images taken by Curiosity’s Mars Hands Lens Imager (MAHLI). https://photojournal.jpl.nasa.gov/catalog/PIA22486

Another ideal capability for a Mars rover is independent analysis of data to avoid the tedious process of data transmission from Mars to Earth and back. In the Mars Spectrometry: Detect Evidence for Past Habitability challenge, NASA engaged the public to build a model to automatically analyze mass spectrometry data from rock and soil samples. Out of 656 entries, a software engineer from Brisbane, Australia, won $15,000 for first place. The second-place winner from the United States received $7,500, and the third-place winner from India won $5,000.

Biological and Physical Sciences

One of the aims of biological science research at NASA is to understand how biological systems acclimate to spaceflight environments. 

A unique classroom-based citizen science program called Growing Beyond Earth advances NASA’s research on growing plants in space. In its seventh year, the NASA program provides all the materials needed for the experiments. In total, more than 40,000 participating students and teachers have contributed hundreds of thousands of data points and tested 180 varieties of edible plants. As a result of their efforts, four types of vegetables were grown by NASA off-Earth, and two varieties have been successfully grown on the International Space Station.

Heliophysics

NASA studies the Sun and its effects on Earth and the solar system—or heliophysics—to increase understanding of how the universe works, how to protect technology and astronauts in space, and how stars contribute to the habitability of planets throughout the universe.

SOHO captured this image of a gigantic coronal hole hovering over the sun’s north pole on July 18, 2013.
SOHO captured this image of a gigantic coronal hole hovering over the sun’s north pole on July 18, 2013.

To enable better discovery and tracking of sungrazing comets—the large but faint objects made of dust and ice in close orbit of the Sun—NASA held the NASA SOHO Comet Search. Over $55,000 in prizes was awarded to solutions to reduce background noise in data recorded by the Large Angle and Spectrometric Coronagraph (LASCO), one of the instruments on the Solar and Heliospheric Observatory (SOHO) spacecraft. Hundreds of participants from around the world devised artificial intelligence and machine learning approaches, which led to the discovery of two previously unidentified comets, including a difficult-to-detect non-group comet.

The preliminary results we’re already seeing come out of this challenge highlight the value of the open science movement.

Katie Baynes

Katie Baynes

NASA's Deputy Chief Science Data Officer

Space Apps 2021

In its tenth year, NASA’s 2021 International Space Apps Challenge took place in 320 locations across 162 countries or territories. The hackathon for coders, scientists, designers, storytellers, makers, technologists, and innovators around the world offered 28 different topics to solve using open data from NASA and others. This year’s winners included an app for homeowners to simplify data from NASA’s Prediction of Worldwide Renewable Energy Resources (POWER) web services portal to help make solar panel purchasing decisions and encourage solar energy use. Another winning app detects, quantifies, follows, and projects the movement of plastic debris in the ocean with high accuracy.

Endnotes

[1] https://science.nasa.gov/about-us/smd-vision

[2] https://drivendata.co/blog/nasa-airathon-winners

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      More than 30,000 scientists gathered in Washington, D.C. during the second week of December – many to show off the work of NASA’s science volunteers! The American Geophysical Union held its annual meeting of professionals this month – the world’s largest gathering of Earth and Space Scientists. Here’s what they were talking about.
      Eighteen NASA-sponsored project team members presented discoveries made with volunteers on topics from solar eclipses to global freshwater lake monitoring and  exoplanet research. Overall, 175 posters and presentations featured the work of volunteers (up from 137 in 2023). Overall, 363 scientists and presenters at the conference described themselves as being involved in citizen science research (up from 201 in 2023). Two dozen scientists at the meeting gathered for lunch in the atrium of the National Portrait Gallery to talk about doing NASA science with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds, and more. Science done with volunteers is often called citizen science or participatory science – it does not require citizenship in any particular country. “Between the immense datasets being collected by NASA missions and the perennial need to open wide the doors to science so everyone can experience the joy and rewards of doing research together, citizen science is needed now more than ever!” said Sarah Kirn, the participatory science strategist at the Gulf of Maine Research Institute in Portland.” You can join one of NASA’s many participatory science projects right here!
      Two dozen scientists gathered for lunch in the atrium of the National Portrait Gallery to talk about working with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds and more. Credit: Sarah Kirn Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Dec 23, 2024 Related Terms
      Citizen Science Earth Science Division Heliophysics Division Planetary Science Division Explore More
      2 min read Jovian Vortex Hunters Spun Up Over New Paper


      Article


      6 days ago
      5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…


      Article


      1 week ago
      5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 


      Article


      2 weeks ago
      View the full article
    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      A method for evaluating thermophysical properties of metal alloys

      Simulation of the solidification of metal alloys, a key step in certain industrial processes, requires reliable data on their thermophysical properties such as surface tension and viscosity. Researchers propose comparing predictive models with experimental outcomes as a method to assess these data.

      Scientists use data on surface tension and viscosity of titanium-based alloys in industrial processes such as casting and crystal growth. Non-Equilibrium Solidification, Modelling for Microstructure Engineering of Industrial Alloys, an ESA (European Space Agency) investigation, examined the microstructure and growth of these alloys using the station’s Electromagnetic Levitator. This facility eliminates the need for containers, which can interfere with experiment results.
      European Space Agency (ESA) astronaut Alexander Gerst is shown in the Columbus module of the International Space Station during the installation of the Electromagnetic Levitator.ESA/Alexander Gerst Overview of techniques for measuring thermal diffusion

      Researchers present techniques for measuring thermal diffusion of molecules in a mixture. Thermal diffusion is measured using the Soret coefficient – the ratio of movement caused by temperature differences to overall movement within the system. This has applications in mineralogy and geophysics such as predicting the location of natural resources beneath Earth’s surface.

      A series of ESA investigations studied diffusion, or how heat and particles move through liquids, in microgravity. Selectable Optical Diagnostics Instrument-Influence of VIbrations on DIffusion of Liquids examined how vibrations affect diffusion in mixtures with two components and SODI-DCMIX measured more-complex diffusion in mixtures of three or more components. Understanding and predicting the effects of thermal diffusion has applications in various industries such as modeling of underground oil reservoirs.
      NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 installation inside the station’s Microgravity Science Glovebox.JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi Research validates ferrofluid technology

      Researchers validated the concept of using ferrofluid technology to operate a thermal control switch in a spacecraft. This outcome could support development of more reliable and long-lasting spacecraft thermal management systems, increasing mission lifespan and improving crew safety.

      Überflieger 2: Ferrofluid Application Research Goes Orbital analyzed the performance of ferrofluids, a technology that manipulates components such as rotors and switches using magnetized liquids and a magnetic field rather than mechanical systems, which are prone to wear and tear. This technology could lower the cost of materials for thermal management systems, reduce the need for maintenance and repair, and help avoid equipment failure. The paper discusses possible improvements to the thermal switch, including optimizing the geometry to better manage heat flow.
      A view of the Ferrofluid Application Research Goes Orbital investigation hardware aboard the International Space Station. UAE (United Arab Emirates)/Sultan AlneyadiView the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s a new year on Mars, and while New Year’s means winter in Earth’s northern hemisphere, it’s the start of spring in the same region of the Red Planet. And that means ice is thawing, leading to all sorts of interesting things. JPL research scientist Serina Diniega explains. NASA/JPL-Caltech Instead of a winter wonderland, the Red Planet’s northern hemisphere goes through an active — even explosive — spring thaw.
      While New Year’s Eve is around the corner here on Earth, Mars scientists are ahead of the game: The Red Planet completed a trip around the Sun on Nov. 12, 2024, prompting a few researchers to raise a toast.
      But the Martian year, which is 687 Earth days, ends in a very different way in the planet’s northern hemisphere than it does in Earth’s northern hemisphere: While winter’s kicking in here, spring is starting there. That means temperatures are rising and ice is thinning, leading to frost avalanches crashing down cliffsides, carbon dioxide gas exploding from the ground, and powerful winds helping reshape the north pole.
      “Springtime on Earth has lots of trickling as water ice gradually melts. But on Mars, everything happens with a bang,” said Serina Diniega, who studies planetary surfaces at NASA’s Jet Propulsion Laboratory in Southern California.
      Mars’ wispy atmosphere doesn’t allow liquids to pool on the surface, like on Earth. Instead of melting, ice sublimates, turning directly into a gas. The sudden transition in spring means a lot of violent changes as both water ice and carbon dioxide ice — dry ice, which is much more plentiful on Mars than frozen water — weaken and break.
      “You get lots of cracks and explosions instead of melting,” Diniega said. “I imagine it gets really noisy.”
      Using the cameras and other sensors aboard NASA’s Mars Reconnaissance Orbiter (MRO), which launched in 2005, scientists study all this activity to improve their understanding of the forces shaping the dynamic Martian surface. Here’s some of what they track.
      Frost Avalanches
      In 2015, MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera captured a 66-foot-wide (20-meter-wide) chunk of carbon dioxide frost in freefall. Chance observations like this are reminders of just how different Mars is from Earth, Diniega said, especially in springtime, when these surface changes are most noticeable.
      Martian spring involves lots of cracking ice, which led to this 66-foot-wide (20-meter-wide) chunk of carbon dioxide frost captured in freefall by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter in 2015NASA/JPL-Caltech/University of Arizona “We’re lucky we’ve had a spacecraft like MRO observing Mars for as long as it has,” Diniega said. “Watching for almost 20 years has let us catch dramatic moments like these avalanches.”
      Gas Geysers
      Diniega has relied on HiRISE to study another quirk of Martian springtime: gas geysers that blast out of the surface, throwing out dark fans of sand and dust. These explosive jets form due to energetic sublimation of carbon dioxide ice. As sunlight shines through the ice, its bottom layers turn to gas, building pressure until it bursts into the air, creating those dark fans of material.
      As light shines through carbon dioxide ice on Mars, it heats up its bottom layers, which, rather than melting into a liquid, turn into gas. The buildup gas eventually results in explosive geysers that toss dark fans of debris on to the surface.light shines through carbon dioxide ice on Mars But to see the best examples of the newest fans, researchers will have to wait until December 2025, when spring starts in the southern hemisphere. There, the fans are bigger and more clearly defined.
      Spiders
      Another difference between ice-related action in the two hemispheres: Once all the ice around some northern geysers has sublimated in summer, what’s left behind in the dirt are scour marks that, from space, look like giant spider legs. Researchers recently re-created this process in a JPL lab.
      Sometimes, after carbon dioxide geysers have erupted from ice-covered areas on Mars, they leave scour marks on the surface. When the ice is all gone by summer, these long scour marks look like the legs of giant spiders.NASA/JPL-Caltech/University of Arizona Powerful Winds
      For Isaac Smith of Toronto’s York University, one of the most fascinating subjects in springtime is the Texas-size ice cap at Mars’ north pole. Etched into the icy dome are swirling troughs, revealing traces of the red surface below. The effect is like a swirl of milk in a café latte.
      “These things are enormous,” Smith said, noting that some are a long as California. “You can find similar troughs in Antarctica but nothing at this scale.”
      As temperatures rise, powerful winds kick up that carve deep troughs into the ice cap of Mars’ north pole. Some of these troughs are as long as California, and give the Martian north pole its trademark swirls. This image was captured by NASA’s now-inactive Mars Global Surveyor.NASA/JPL-Caltech/MSSS Fast, warm wind has carved the spiral shapes over eons, and the troughs act as channels for springtime wind gusts that become more powerful as ice at the north pole starts to thaw. Just like the Santa Ana winds in Southern California or the Chinook winds in the Rocky Mountains, these gusts pick up speed and temperature as they ride down the troughs — what’s called an adiabatic process.
      Wandering Dunes
      The winds that carve the north pole’s troughs also reshape Mars’ sand dunes, causing sand to pile up on one side while removing sand from the other side. Over time, the process causes dunes to migrate, just as it does with dunes on Earth.
      This past September, Smith coauthored a paper detailing how carbon dioxide frost settles on top of polar sand dunes during winter, freezing them in place. When the frost all thaws away in the spring, the dunes begin migrating again.
      Surrounded by frost, these Martian dunes in Mars’ northern hemisphere were captured from above by NASA’s Mars Reconnaissance Orbiter using its HiRISE camera on Sept. 8, 2022. NASA/JPL-Caltech/University of Arizona Each northern spring is a little different, with variations leading to ice sublimating faster or slower, controlling the pace of all these phenomena on the surface. And these strange phenomena are just part of the seasonal changes on Mars: the southern hemisphere has its own unique activity.
      More About MRO
      The University of Arizona, in Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington.
      For more information, visit:
      https://science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-177
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Mars Reconnaissance Orbiter (MRO) Jet Propulsion Laboratory Mars Explore More
      5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
      Article 3 days ago 5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 4 days ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...