Jump to content

Going Beyond the Challenge for New and Continued Success


NASA

Recommended Posts

  • Publishers

NASA’s Space Technology Mission Directorate connects the public to the agency’s missions and explores creative possibilities for addressing the agency’s research and technology development needs through prizes, challenges, and crowdsourcing opportunities. These challenges bridge NASA’s institutional expertise with the ingenuity of industry experts, universities, and the public at large, resulting in collaborations that help advance space technology solutions. For many solvers, success doesn’t stop when the NASA challenge ends. Past participants have gone on to work with NASA in other ways and take their technology to new heights in the commercial sector.

Two fair-skinned men stand facing the camera with their arms crossed over their chests. The man on the left is wearing a dark sweatshirt with a white text label on the left breast. He has shoulder-length curly brown hair and is wearing a navy New York Yankees baseball cap. The man on the right is wearing a white button-down shirt and a white undershirt. He has short, dark brown hair and is wearing wire-rimmed glasses. They stand in front of a laboratory-style workspace, with many plants and machines in the background.
CO2 Conversion Challenge (2020) – NASA’s Centennial Challenges has an impact far greater than just space travel – just ask Air Co., a Brooklyn-based company that competed and won a three-way tie in the CO2 Conversion Challenge, which ran from 2018 to 2021. Air Co. founders Gregory Constantine (left) and Stafford Sheehan (right) used their innovative idea, which originally existed to convert carbon dioxide into glucose, to create immediately usable hand sanitizer at the height of the COVID-19 pandemic.
Image courtesy of Air Co.

Commercializing Challenge-Supported CO2 Technology

Air Company of Brooklyn, New York, was one of three teams to win the final round of NASA’s CO2 Conversion Challenge, which concluded in August 2021. This challenge asked the public to develop ways to convert carbon dioxide (CO2), an abundant resource on Mars, into sugar, which could be used by astronauts to make products including plastics, adhesives, fuels, food, and medicine. Air Company received a $700,000 award in the final phase of the competition for its thermochemical sugar production. First, CO2 and hydrogen are combined to make methanol, then hydrogen is removed to turn methanol into formaldehyde. The third chemical reaction produces a simple sugar called D-glucose.

Since participating in the CO2 Conversion Challenge, Air Company has commercialized its CO2-converting technology in unique ways, producing hand sanitizer, fragrance oil, and even vodka. The CO2 used is sourced from biogenic emissions – mitigating emissions that are released into the atmosphere from ethanol fermentation facilities.1 The company has also gone on to compete in NASA’s Deep Space Food Challenge and developed a system and processes for turning air, water, electricity, and yeast into food. In May 2023, Air Company was named a winner in Phase 2 of the challenge, receiving a $150,000 prize from NASA and a chance to compete in Phase 3 for a grand prize of $750,000 from a total prize purse of up to $1.5 million.

Cross-Program Competitors Advance Lunar Power Solutions

Astrobotic Technology, a small business based in Pittsburgh, was named a grand prize winner of Phase 1 of NASA’s Watts on the Moon Challenge in May 2021. The company is no stranger to NASA – in fact, John Thornton, CEO of Astrobotic, credits early NASA Small Business Innovation Research (SBIR) funding as “the lifeblood of the company,” starting with its first award in 2009. Astrobotic has also received funding from NASA’s Tipping Point program and was selected to deliver scientific and technology payloads to the Moon as part of the agency’s Commercial Lunar Payloads Services (CLPS) initiative.

Artist concept of a vertical solar array being used as a power source on the surface of the Moon with robotics positioned nearby.
Having continuous power throughout the lunar day and night during missions on the surface of the Moon is an essential technology asset for long-term crew and scientific exploration.

For the Watts on the Moon Challenge, teams were asked to submit ideas for up to three parts of a hypothetical mission scenario: generating power from a plant to harvest water and oxygen from a dark crater on the Moon’s South Pole. Astrobotic received the grand prize in response to the first part of the scenario, proposing a fleet of small rovers that transport power cables between the solar array power source and the rover that operates inside the crater. The team also received a prize for collaborating with Montreal startup Eternal Light Photonics Corp. for a wireless mobile power beaming solution.

According to Astrobotic, the prizes contribute to the company’s development of lunar surface power infrastructure.2 In August 2022, the company was selected by NASA to receive $6.2 million to help advance Vertical Solary Array Technology (VSAT) under the agency’s Game Changing Development program.3

Printing Homes for Extraterrestrial Lands and on Earth

In November 2022, small business ICON, based in Austin, Texas, received a $57.2 million contract from NASA to develop construction technologies that could support infrastructure such as landing pads, habitats, and roads on the Moon. This effort supports NASA’s Moon to Mars Planetary Autonomous Construction Technologies (MMPACT) project. Preceding this, the company participated in NASA’s 3D-Printed Habitat Challenge, which ran from 2015 to 2019. This challenge asked competitors to design, develop, and test several areas of 3D printing that could contribute to potential human shelter on Mars. ICON partnered with the Colorado School of Mines in Phase 3: Level 1 of the challenge. The team was named a top ten finalist for their digital representation of a house on Mars using building information modeling software tools.

A new award from NASA will support ICON in developing construction technology that could be used on the Moon and Mars.

The technology ICON initially developed through the NASA challenge has helped pave several paths for the company. In addition to designing extraterrestrial infrastructure, ICON also impacts global housing by constructing 3D printed homes on Earth. The company created the first 3D printed community of homes in Nacajuca, Mexico.4 Taking its challenge journey full circle, ICON has also released its own global architecture competition open to the public.

Global Participation Leads to Mini Rover Missions

Based in Budapest, Hungary, Puli Space Technologies is an example of the global collaboration that is possible through prize, challenge, and crowdsourcing opportunities. In 2020, the company participated in the Honey, I Shrunk the NASA Payload competition, which sought designs for miniature science instruments – about the size of a bar of soap – that could help scout the lunar surface, collecting key information about the Moon, its resources, and the environment. The challenge was sponsored by NASA’s Lunar Surface Innovation Initiative to cultivate new ideas, spur innovation and enhance the development of capabilities for exploration of the lunar surface. The challenge received 132 entries from 29 countries. Puli Space won first prize in the first iteration of the challenge for its conceptual Puli Lunar Water Snooper (PLWS) to identify hydrogen and all hydrogen-bearing volatiles, like water-ice, on the Moon.

Following the challenge, NASA released Honey, I Shrunk the NASA Payload Challenge, the Sequel, a two-year challenge that asked teams to develop, build, and prototype their miniature rover payloads. Out of the 14 finalists from the original challenge, four teams were chosen to advance to stage 2 of the sequel challenge. As part of the challenge, NASA provided $675,000, which was split between the four teams to fund development. Puli Space placed second in the sequel challenge for developing PLWS. According to Puli Space CEO Tibor Pacher, the connections made in preparing for the challenge led to PLWS’s placement on at least two planned commercial Moon missions.5

Endnotes

[1] https://www.aircompany.com/

[2] https://www.astrobotic.com/astrobotic-wins-two-nasa-prizes-for-lunar-power-infrastructure/

[3] https://www.nasa.gov/press-release/three-companies-to-help-nasa-advance-solar-array-technology-for-moon

[4] https://www.iconbuild.com/projects/3d-printed-homes-in-nacajuca-mexico-with-new-story

[5] https://lsic.jhuapl.edu/Resources/files/Newsletters/LSIC-Newsletter_2023_June_v4.pdf

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Zoom into Solar Orbiter's four new Sun images, assembled from high-resolution observations by the spacecraft's PHI and EUI instruments made on 22 March 2023. The PHI images are the highest-resolution full views of the Sun's visible surface to date, including maps of the Sun's messy magnetic field and movement on the surface. These can be compared to the new EUI image, which reveals the Sun's glowing outer atmosphere, or corona.
      View the full article
    • By NASA
      Following eight months of intense research, design, and prototyping, six university teams presented their “Inflatable Systems for Lunar Operations” concepts to a panel of judges at NASA’s 2024 Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge forum. 
      The challenge, funded by NASA’s Space Technology Mission Directorate and Office of STEM Engagement, seeks novel ideas from higher education on a new topic each year and supports the agency’s Lunar Surface Innovation Initiative in developing new approaches and innovative technologies to pave the way for successful exploration on the surface of the Moon. This year, teams were asked to develop low Size, Weight, and Power inflatable technologies, structures and systems that could benefit future Artemis missions to the Moon and beyond. 
      Taking top honors at this year’s forum receiving the Artemis Award was Northwestern University with National Aerospace Corporation & IMS Engineered Products, with their concept titled METALS: Metallic Expandable Technology for Artemis Lunar Structures. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission.  
      The Northwestern University BIG Idea Challenge team developed METALS, an inflatable metal concept for long-term storage of cryogenic fluid on the Moon. The concept earned the Artemis Award, top honors in NASA’s 2024 BIG Idea Challenge.Credit: National Institute of Aerospace The Artemis Award is a generous recognition of the potential impact that our work can have. We hope it can be a critical part of the Artemis Program moving forward. We’re exceptionally grateful to have the opportunity to engage directly with NASA in research for the Artemis Program in such a direct way while we’re still students.” 
      Julian Rocher
      Team co-lead for Northwestern University
      METALS is an inflatable system for long term cryogenic fluid storage on the Moon. Stacked layers of sheet metal are welded along their aligned edges, stacked inside a rocket, and inflated once on the lunar surface. The manufacturing process is scalable, reliable, and simple. Notably, METALS boasts superior performance in the harsh lunar environment, including resistance against radiation, abrasion, micrometeorites, gas permeability, and temperature extremes.
      Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge. Credit: Northwestern University We learned to ask the right questions, and we learned to question what is the status quo and to go above and beyond and think outside the box. It’s a special mindset for everyone to have on this team… it’s what forces us to innovate.” 
      Trevor Abbott
      Team co-lead for Northwestern University
      Arizona State University took home the 2024 BIG Idea Challenge Systems Engineering prize for their project, AEGIS: Inflatable Lunar Landing Pad System. The AEGIS system is designed to deflect the exhaust gasses of lunar landers thereby reducing regolith disturbances generated during landing. The system is deployed on the lunar surface where it uses 6 anchors in its base to secure itself to the ground. Once inflated to its deployed size of 14 m in diameter, AEGIS provides a reusable precision landing zone for incoming landers.
      Arizona State University earned the Systems Engineering prize for their BIG Idea Challenge project: AEGIS: Inflatable Lunar Landing Pad System. Arizona State University
      This year’s forum was held in tandem with the Lunar Surface Innovation Consortium’s (LSIC) Fall Meeting at the University of Nevada, Las Vegas, where students had the opportunity to network with NASA and industry experts, attend LSIC panels and presentations, and participate in the technical poster session. The consortium provides a forum for NASA to communicate technological requirements, needs, and opportunities, and for the community to share with NASA existing capabilities and critical gaps. 
      We felt that hosting this year’s BIG Idea Forum in conjunction with the LSIC Fall Meeting would be an exciting opportunity for these incredibly talented students to network with today’s aerospace leaders in government, industry, and academia. Their innovative thinking and novel contributions are critical skills required for the successful development of the technologies that will drive exploration on the Moon and beyond.” 
      Niki Werkheiser
      Director of Technology Maturation in NASA’s Space Technology Mission Directorate
      In February, teams submitted proposal packages, from which six finalists were selected for funding of up to $150,000 depending on each team’s prototype and budget. The finalists then worked for eight months designing, developing, and demonstrating their concepts. The 2024 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges. Experts from NASA, Johns Hopkins Applied Physics Laboratory, and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and the teams’ verification testing. In addition to the presentation, the teams provided a technical paper and poster detailing their proposed inflatable system for lunar operations. 
      Year after year, BIG Idea student teams spend countless hours working on tough engineering design challenges. Their dedication and ‘game-changing’ ideas never cease to amaze me. They all have bright futures ahead of them.” 
      David Moore
      Program Director for NASA’s Game Changing Development program
      Second-year mechanical engineering student Connor Owens, left, and electrical engineering graduate student Sarwan Shah run through how they’ll test the sheath-and-auger anchor for the axial vertical pull test of the base anchor in a former shower room in Sun Devil Hall. Image credit: Charlie Leight/ASU News The University of Maryland BIG Idea Challenge team’s Auxiliary Inflatable Wheels for Lunar Rover project in a testing environment University of Maryland Students from University of Michigan and a component of their Cargo-BEEP (Cargo Balancing Expandable Exploration Platform) projectUniversity of Michigan Northwestern University welders prepare to work on their 2024 BIG Idea Challenge prototype, a metal inflatable designed for deployment on the Moon.Northwestern University Brigham Young University’s Untethered and Modular Inflatable Robots for Lunar Operations projectBrigham Young University California Institute of Technology’s PILLARS: Plume-deployed Inflatable for Launch and Landing Abrasive Regolith Shielding projectCalifornia Institute of Technology The Inflatable Systems for Lunar Operations theme allowed teams to submit various technology concepts such as soft robotics, deployable infrastructure components, emergency shelters or other devices for extended extravehicular activities, pressurized tunnels and airlocks, and debris shields and dust protection systems. National Institute of Aerospace NASA’s Space Technology Mission Directorate sponsors the BIG Idea Challenge through a collaboration between its Game Changing Development program and the agency’s Office of STEM Engagement. It is managed by a partnership between the National Institute of Aerospace and Johns Hopkins Applied Physics Laboratory.   
      Team presentations, technical papers, and digital posters are available on the BIG Idea website.       
      For full competition details, visit:  https://bigidea.nianet.org/2024-challenge
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Game Changing Development Projects
      Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
      NASA’s Lunar Surface Innovation Initiative
      Get Involved
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Abigail Reigner, a systems engineer at NASA’s Glenn Research Center in Cleveland, supports the agency’s research in electrified aircraft propulsion to enable more sustainable air travel. Behind her is a 25% scale model of NASA’s SUbsonic Single Aft eNgine (SUSAN) Electrofan aircraft concept used to test and demonstrate hybrid electric propulsion systems for emission reductions and performance boosts in future commercial aircraft.
      Credit: NASA/Sara Lowthian-Hanna Growing up outside of Philadelphia, Abigail Reigner spent most of her childhood miles away from where her family called home, and where there was little trace of her Native American tribe and culture.
      Belonging to the Comanche Nation that resides in Lawton, Oklahoma, Reigner’s parents made every effort to keep her connected to her Indigenous heritage and part of a community that would later play a key role in her professional journey.
      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions."
      Abigail Reigner

      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions,” Reigner said. “We would go down to Oklahoma often in the summertime, spending time with family and staying immersed in our culture.”
      Both her parents come from a teaching background, so Reigner was surrounded by hands-on learning experiences early in life. As a school teacher, her mother would participate in local outreach events each year, talking and interacting with students. Her father, a middle school technology education teacher, taught Reigner how to use computer-aided design (CAD) and helped introduce her to the world of engineering at a young age.  
      These unique experiences helped spark Reigner’s curiosity for learning about science, technology, engineering, and math (STEM) and connecting with others in her community who shared these interests. Reigner says she never takes her upbringing for granted. 
      “I feel pretty lucky to have grown up with so many educational opportunities, and I try to use them as a way to give back to my community,” Reigner said.
      After participating in various engineering and robotics classes in high school and realizing a career in STEM was the right fit for her, Reigner went on to attend the Rochester Institute of Technology in New York where she earned bachelor’s and master’s degrees in mechanical engineering.
      During her time there, she joined the American Indian Science and Engineering Society (AISES) where she got the unique opportunity to connect with other Indigenous students and mentors in STEM fields and gain leadership experience on projects that eventually set her up for internship opportunities at NASA.
      “The opportunities I got through AISES led me to get an internship at NASA’s Jet Propulsion Laboratory during the summer of 2021, and then an eight-month co-op the following year working in the center’s materials science division,” Reigner said.
      Through AISES, Reigner also met Joseph Connolly, an aerospace engineer at NASA’s Glenn Research Center in Cleveland who was looking to recruit Indigenous students for full-time positions in the agency. Upon graduating from college, Reigner joined NASA Glenn as an engineer in the summer of 2024.
      Abigail Reigner (top far left) and Joseph Connolly (middle far right) pose with NASA employees while staffing a booth at an American Indian Science and Engineering Society (AISES) conference to help recruit Indigenous students to the agency. Credit: Abigail Reigner Today, Reigner works as a systems engineer supporting NASA Glenn’s efforts to test and demonstrate electrified aircraft propulsion technologies for future commercial aircraft as part of the agency’s mission to make air travel more sustainable.
      One of the projects she works on is NASA’s Electrified Powertrain Flight Demonstration (EPFD), where she supports risk-reduction testing that enables the project to explore the feasibility of hybrid electric propulsion in reducing emissions and improving efficiency in future aircraft.

      “It’s always good to know that you’re doing something that is furthering the benefit of humanity,” Reigner said. “Seeing that unity across NASA centers and knowing that you are a part of something that is accelerating technology for the future is very cool.” 
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency.”
      Abigail Reigner

      The growing community of Native Americans at NASA Glenn has fostered several initiatives over the years that have helped recruit, inspire, and retain Indigenous employees.
      Leveraging some of the agency’s diversity programs that provide educational STEM opportunities for underrepresented communities, the Native Americans at NASA group has encouraged more students with Indigenous backgrounds to get involved in technical projects while developing the skills needed to excel in STEM fields.
      “The Native American support group at NASA has been around since the mid-to-late 1980s and was actually one of the first Native American employee resources groups at the agency,” Connolly said. “Through this, we’ve been able to connect a number of Native employees with senior leaders across NASA and establish more agencywide recruitment efforts and initiatives for Native Americans.”
      These initiatives range from support through NASA’s Minority University Research and Education Project (MUREP) to help recruit more Indigenous students, to encouraging participation in hands-on learning experiences through projects such as NASA’s University Leadership Initiative (ULI) and the agency’s involvement in the First Nations Launch competition, which helps provide students with opportunities to conduct research while developing engineering and team-building skills.
      The efforts of the Native American community at NASA Glenn and across the agency have been successful in not only creating a direct pipeline for Indigenous students into the NASA workforce, but also allowing them to feel seen and represented in the agency, says Connolly.
      For Reigner, having this community and resource group at NASA to help guide and support her through her journey has been crucial to her success and important for the future of diversity within the agency.
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency,” Reigner said. Without their support and initiatives to recruit and retain students, I wouldn’t be here today.” 
      Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 4 days ago 1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame 
      Article 6 days ago 1 min read NASA Encourages Careers in STEM During Event
      Article 6 days ago View the full article
    • By NASA
      Clayton P. Turner, associate administrator for Space Technology Mission DirectorateCredit: NASA Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.
      Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.
      “Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”
      As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.
      Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.
      In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.
      NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.
      For more about Turner’s experience, visit his full biography online at:
      https://go.nasa.gov/48UmkmS
      -end-
      Meira Bernstein / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov
      Share
      Details
      Last Updated Nov 18, 2024 LocationNASA Headquarters Related Terms
      Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...