Jump to content

Collaborating with Public Innovators to Accelerate Space Exploration


Recommended Posts

  • Publishers
Posted

8 min read

Collaborating with Public Innovators to Accelerate Space Exploration

NASA astronauts Shannon Walker, left, Victor Glover, Mike Hopkins, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, right are seen inside the SpaceX Crew Dragon Resilience spacecraft onboard the SpaceX GO Navigator recovery ship shortly after having landed in the Gulf of Mexico off the coast of Panama City, Florida, Sunday, May 2, 2021.
NASA astronauts Shannon Walker, left, Victor Glover, Mike Hopkins, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, right are seen inside the SpaceX Crew Dragon Resilience spacecraft onboard the SpaceX GO Navigator recovery ship shortly after having landed in the Gulf of Mexico off the coast of Panama City, Florida, Sunday, May 2, 2021. NASA’s SpaceX Crew-1 mission was the first crew rotation flight of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket with astronauts to the International Space Station as part of the agency’s Commercial Crew Program.
NASA/Bill Ingalls

With the successful launch and landing of Artemis I in 2022, NASA set the stage for a new era of space exploration. Together, NASA and its partners will lead humanity to the Moon and prepare for the next giant leap: human exploration of Mars.

To address the multitude of challenges that come with planning for this new era, NASA is calling on individuals and teams from the public to develop new and innovative approaches. Some of the topics addressed through NASA-sponsored contests, challenges, and competitions include waste management and sustainability in space, astronaut health and wellness, and a host of advanced technology needs for long-term space exploration.

Sustainability and Waste Management

A round-trip visit to Mars is estimated to take two to three years. During this adventure, astronauts will need abundant supplies with minimal waste. To be as efficient and self-sufficient as possible, they must recycle, repurpose, or reprocess what they have and make what they need. Thanks to NASA competitions, innovators devised ways to manage ash created from trash in microgravity, reuse materials for growing plants, eject waste from a spacecraft, and recycle orbiting space debris.  

With no landfills in space, NASA is developing a reactor that uses thermal processes to turn trash into water, gas, and ash. To manage the ash produced by the reactor, the agency called on the public and awarded three teams a total of $30,000 as part of the Trash-to-Gas Ash Management Challenge. The first-place winner proposed using ultrasonic waves to automate ash removal from the Orbital Syngas Commodity Augmentation Reactor (OSCAR) system, a test rig designed to make use of trash and human waste generated during long-duration spaceflight.

A researcher wearing safety glasses examines payload hardware in a lab.
Ray Pitts, co-principal investigator for the Orbital Syngas Commodity Augmentation Reactor (OSCAR), performs ground testing at NASA’s Kennedy Space Center in Florida. The tests are in preparation for a scheduled suborbital flight test later this year, facilitated by NASA’s Flight Opportunities program. Begun as an Early Career Initiative project, OSCAR evaluates technology to make use of trash and human waste generated during long-duration spaceflight.

Another way to handle trash in space is to reuse or recycle it. In the Waste to Base Materials Challenge: Sustainable Reprocessing in Space, NASA asked contestants of this competition to submit ideas to convert or repurpose waste into valuable materials like propellant or stock for 3D printing. A winner in the foam packing category proposed a method to recycle packing foam and urine for hydroponics; a winner in the trash category suggested clothing as a growing medium. All teams shared a $24,000 prize.

For the non-recyclable waste made during the journey to and from Mars, NASA sought concepts for a jettison mechanism to eject the material from the spacecraft under the Waste Jettison Mechanism Challenge. If not disposed of, the waste will take up crucial space, pose risks to the spacecraft and crew by creating hazards or contaminants, and decrease fuel efficiency. The agency awarded $30,000 for concepts including a scissor-spring-shot, a secure variable energy launcher, a CO2 trash launcher, and a spring-loaded ejection mechanism.

With more than 17 million pounds of space debris currently in orbit—sections of rockets and non-operational satellites made of aluminum, titanium, steel, plastics, ceramics, and more—the agency is exploring whether recycling the materials is more cost-effective than launching new materials into space. Through the Orbital Alchemy Challenge, NASA awarded $55,000 in prizes for proposals on how to recycle the objects in orbit.

Astronaut Health and Wellness

NASA is making plans to protect astronaut health and performance during long-duration space exploration as well as to develop countermeasures for potential problems during such travel. With goals to establish the first long-term presence on the Moon and send the first astronauts to Mars, NASA requested the public’s help to come up with ways to produce food, preserve the integrity of spacesuits, and monitor an astronaut’s cognitive state.

During extended space missions, astronauts may produce their own safe, nutritious, and appetizing foods. To devise ideas for novel and game-changing food technologies or systems that could feed astronauts during space travel, NASA held the Deep Space Food Challenge, awarding a total of $450,000 to eight winning U.S. teams. Winning technologies included a system and processes for turning air, water, electricity, and yeast into food and a solution that mimics photosynthesis to produce plant- and mushroom-based ingredients.

Two white men with brunette hair, wearing navy blue t-shirts and black pants with sneakers, stand in front of a food system demonstration station comprised of nine incubator cubes with plants/vegetation inside. One of the men stands in front of a black table and, while wearing light blue gloves, spoons alfalfa sprouts from a large bowl into a small sample cup. Also on the table are wooden spoons, more sample cups, and a tray of alfalfa sprouts. Behind the demonstration station are three navy backdrops, which include affiliated logos and graphic demonstrations showing how the food system works.
Deep Space Food Challenge (2023) – Two Challenge finalists prepare samples of their food system to share at the Phase 2 winner’s announcement event in Brooklyn, New York.
NASA

NASA needs to detect and reduce spacesuit injury risk, but current software solutions are limited. To develop a new solution, NASA conducted the Spacesuit Detection Challenge1 to create software able to detect one or more spacesuits in various environments, discriminate between a person and a spacesuit, and extract suit postures from obscured images. There were five winning programs to label and identify spacesuit motions from video and photos.

As space missions move farther away from Earth, the responsibility for space operations shifts from mission control on the ground to astronaut crews in flight. To gauge astronauts’ ability to remember, make real-time decisions, and think several seconds ahead, NASA’s Cognitive State Determination System contest2 asked participants to develop a biometric sensor suite using various inputs to predict cognitive state. Thirty teams received awards through this contest.

Managing Payloads, Deliveries, and Storage

Aside from managing a sustainable environment and maintaining astronaut health in space, NASA has a host of additional needs to enable future space exploration. Answering NASA’s calls for assistance through various competitions, the public helped devise a plethora of technologies for autonomous observation, nighttime precision landing, docking station flooring, risk prediction using artificial intelligence, advanced scientific sensors, software to analyze images, and programs for modeling shock.

With $2 million in total prizes, the Autonomous Observation Challenge No. 1 of the NASA TechLeap Challenge sought observation technologies to detect, track, and establish line-of-sight communications with a lander, rover, or other objects on the Moon’s surface. One of the winning technologies autonomously detects, tracks, and logs nascent wildfires and similar phenomena. Another winning design uses visible and infrared cameras to identify and classify plumes in Earth’s atmosphere using an advanced form of machine learning.

Even if the terrain is hazardous and lighting conditions are low, NASA needs to be able to land its spacecraft safely. NASA TechLeap’s Nighttime Precision Landing Challenge No. 1 worth up to $650,000 requested sensing systems to detect hazards from an altitude of 250 meters or higher and with the capability to process the data in real-time to generate a terrain map. One winning system leveraged a light projector to project a grid of reflective points visible to a camera, creating an initial geometry map. It then used light detection and ranging with advanced computer vision, machine learning, robotics, and computing to generate a map of the terrain.

Image of lunar landing equipment
Concept image demonstrating the low-light conditions that will be faced by lunar landers during their missions to explore the Moon.
NASA

A long-duration habitat for use on the Moon, Mars, and during deep space exploration must be capable of attaching to other modules such as pressurized rovers or an airlock. A docking system is needed to join these spacecraft elements even when they are not perfectly aligned, and NASA also needs flexible, strong flooring for use in gravity and microgravity environments. The Spacecraft Docking Adapter with a Flexible but Load-Bearing Floor competition3 awarded five winning designs. 

NASA’s Game Changing Development (GCD) program advances space technology ideas that could lead to new approaches for future space missions. Wanting to identify project risks before they become actual issues, GCD held the Risky Space Business: NASA Artificial Intelligence Risk Prediction Challenge to design a project management tool that can extract past project risk information and use artificial intelligence and machine learning to predict risks on future projects. Three winners received a total of $50,000.

NASA’s Entrepreneurs Challenge seeks fresh ideas in technology that could lead to revolutionary science discoveries to explore and understand the solar system and beyond. In 2021, the program’s focus areas included small satellite technologies that can autonomously recognize scientific phenomena in space and respond as needed; sensors to detect and observe at dramatically reduced size, weight, power, and cost; and instruments to detect biomarkers. After a NASA judging panel selected 10 companies to receive a $10,000 award each, the winners refined their concepts, developed white papers, and gave presentations. The same panel selected seven companies to receive an additional $80,000 in prizes.

On a mission to improve understanding of the Moon over many decades—including changes to its surface—NASA held the Image Co-registration Code Challenge4 to devise the initial versions of the Lunar Mission Co-registration Tool. This tool will process lunar images captured under varying lighting conditions or with different spacecraft or camera characteristics and automatically co-register, color balance, and remove distortions. The images are then available to experts for comparison and examination to identify differences over the decades.

To reduce the risk of critical spacecraft component failure due to shock, NASA models the propagation of shock as closely as possible. While the agency created standards in the early days of spaceflight based on extensive testing across structures, today’s mathematical methods and high-performance computing tools can provide better models. The Aftershock: NASA Shock Propagation Prediction Challenge awarded four contestants a shared prize of $50,000, including a deep learning model that predicts shock response spectrum values connected to different frequencies and learns different connections and contexts between the input data points.

Endnotes

[1] https://www.topcoder.com/blog/nasa-spacesuit-detection-challenge/

[2] https://www.topcoder.com/community/nasa/cognitive-state

[3] https://grabcad.com/challenges/nasa-challenge-spacecraft-docking-adapter-with-a-flexible-but-load-bearing-floor

[4] https://www.topcoder.com/challenges/76c6fb0e-0de3-4d60-b472-37e238e14fc4

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By European Space Agency
      Image: This very high-resolution image captures the Egyptian city of Giza and its surrounding area, including the world-famous Giza Pyramid Complex. View the full article
    • By NASA
      The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
      Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
      Learn more about NASA’s Space Shuttle Program.
      Image credit: NASA
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robotics teams gather on the main floor of the 2025 Aerospace Valley FIRST Robotics Competition at Eastside High School in Lancaster, California, adjusting and testing the functions of their robots, on April 3, 2025NASA/Genaro Vavuris A group of attendees to the 2025 Aerospace Valley FIRST Robotics Competition gather outside Eastside High School’s gymnasium in Lancaster, California, to watch an F/A-18 from NASA’s Armstrong Flight Research Center, in Edwards, California, fly over the school to kick off the competition, on April 3, 2025.NASA/Genaro Vavuris Jose Vasquez, engineering technician at NASA’s Armstrong Flight Research Center at Edwards, California, machines parts for a robot inside NASA’s mobile machine shop at the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris Students from Eagle Robotics, Team 399, supported by volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, adjust their robot during the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris When young minds come together to test their knowledge and creativity in technology and innovation, the results are truly inspiring. In its sixth year, Aerospace Valley Regional FIRST Robotics Competition at East High School in Lancaster, California, proved to be another success. During three action-packed days, hundreds of students from around the world showcased their skills in building and programming robots designed to tackle real-world challenges. Volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, played a key role, mentoring students and sharing expertise to guide the next generation of engineers.
      The Aerospace Valley Regional was started with NASA’s support through the Robotics Alliance Project, which has helped expand robotics programs nationwide. As part of the project, NASA Armstrong supports five local teams and fosters innovation and mentorship for young minds. “It’s more than just a game – it’s a launchpad for future innovators,” said David Voracek, NASA Armstrong’s chief technologist, who has volunteered for 20 years and is the primary logistics manager.
      Brad Flick, NASA Armstrong center director, toured the venue and talked to students, highlighting NASA’s continued commitment to inspiring the next generation of engineers and innovators. The event kicked off with an exciting F/A-18 flyover by NASA Armstrong research test pilots Nils Larson and James Less.
      Throughout the competition, NASA volunteers – judges, scorers, and machinists – offered guidance and ensured smooth operations. The mobile shop supported students by repairing and fabricating parts for their robots, completing 79 jobs during the event. “Almost everything we do needs to get done in minutes,” says Jose Vasquez, volunteer, and engineering technician at NASA Armstrong’s fabrication lab, who volunteered at the event.
      Beyond the competition, students engaged with industry professionals and explored career opportunities. “They don’t just build robots; they build confidence, resilience, and real-world skills alongside mentors who inspire them and volunteers who make it all possible,” Voracek said. This event showcased the talent, determination, and creativity that will shape the future of technology and innovation.
      NASA’s Robotics Alliance Project provides grants for high school teams across the country and supports FIRST Robotics competitions, encouraging students to pursue STEM careers.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.gov Related Terms
      Aeronautics Armstrong Flight Research Center Learning Resources Next Gen STEM Explore More
      3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 17 hours ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 1 day ago 5 min read NASA Announces 31st Human Exploration Rover Challenge Winners
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...