Jump to content

Inspiring the Next Generation with Student Challenges and Learning Opportunities


NASA

Recommended Posts

  • Publishers

8 min read

Inspiring the Next Generation with Student Challenges and Learning Opportunities

Teams operate their rover on a gravel track while participating in the Human Exploration Rover Challenge (HERC).

Creativity and curiosity are strongly tied to NASA’s missions and vision. Many of the agency’s public opportunities foster these traits by engaging students and educators. Participants of all ages and levels, from kindergarten to college, used their imaginations and enthusiasm to solve open innovation challenges related to science, technology, engineering, and mathematics (STEM) education in fiscal years 2021-2022.

Advancing and Encouraging Aerospace Careers

Multiple NASA programs partnered with Starburst Accelerator in Los Angeles to launch the 2022 Minority Serving Institutions (MSI) Space Accelerator Competition. This opportunity set out to engage underrepresented academic communities and help NASA make advancements in the areas of machine learning, artificial intelligence, and the development of autonomous systems.  Three selected winning teams received $50,000 prizes and were enrolled in a 10-week accelerator program, operated by Starburst, to help them prepare to commercialize their proposals. The winning teams also participated in trainings with mentors at NASA’s Jet Propulsion Laboratory in Southern, California.

“The goal is not only to invest in the best ideas from MSIs, but to diversify our supplier base in the long term,” said former NASA Associate Administrator for Technology, Policy, and Strategy Bhavya Lal.

The 2021 Revolutionary Aerospace Systems Concept Academic Linkage (RASC-AL) Competition asked undergraduate and graduate teams to develop new, innovative concepts that could improve our ability to operate in space. The themes ranged from designing a habitat that can support a crew for 30 days at the lunar South Pole, to developing a Mars Ascent Vehicle (MAV) concept that can deliver a crew from the surface of Mars to a low Mars orbit, to designing architectures to visit Venus and Ceres.  

Based on concepts outlined in their technical papers, fourteen university teams were selected to present at the 2021 RASC-AL Forum, receiving a $6,000 stipend each to help fund participation. The winning teams from the forum, University of Puerto Rico – Mayagüez and University of Texas at Austin, received an additional travel stipend to present their respective concepts, Discovery and Endeavour – Ceres Interplanetary Pathway for Human Exploration and Research (DECIPHER) and Regolith-Volatile Extraction and Return Expedition (ReVERE), at the AIAA ASCEND aerospace conference. 

Students in grades 6-12 participated in NASA’s TechRise Student Challenge, in which teams worked together to design and build science and technology experiments ahead of suborbital flight tests. In the first challenge, students submitted ideas for experiments that would work on a suborbital rocket with a few minutes of microgravity or a high-altitude balloon with exposure to Earth’s atmosphere and planetary views. In the second challenge, the teams focused solely on high-altitude balloon experiment ideas. Across both years, 117 teams of approximately 1,100 students total were selected to win the challenge, which offered hands-on insight into the design and test process used by NASA-supported researchers.

Artemis Student Challenges

Group of people holding hands in a star formation and smiling for a group photo.
Photographic coverage of NASA Spacesuit User Interface Technologies for Students (NASA SUITS) Onsite Test Week (OSTEM)

The annual Spacesuit User Interface Technologies for Students (SUITS) Challenge asks U.S. undergraduate and graduate students to design and create spacesuit information displays within augmented reality (AR) environments. During a moonwalk, astronauts will rely on a variety of assets, including their spacesuits, life support systems, geology tools, power systems, and more. An AR display as part of the spacesuit could transform astronauts’ ability to live and work in space by providing data on their assets, potentially enhancing performance, workload, and situational awareness. The students’ contributions will aid the work of NASA’s Human Interface Branch, which supports the agency’s human spaceflight programs, including Artemis, the International Space Station, and commercial partner programs. 

The Lunabotics Challenge is an opportunity for teams of U.S. university students to engage with the systems engineering process by designing, building, and operating a lunar robot. The teams also conduct public outreach, submit systems engineering papers, and demonstrate their work to a NASA review panel. This challenge is designed to pursue innovations that could be applied to future NASA missions, including Artemis. Awards include scholarship funds, with the top prize of $5,000 awarded to the University of Alabama team in 2022.  

Lucia Grisanti and Shriya Sawant, NASA's two national winners for the 2022 Lunabotics Junior contest
Lucia Grisanti and Shriya Sawant, NASA’s two national winners for the 2022 Lunabotics Junior contest

Two Lunabotics Jr. Challenges also took place in 2022 with separate divisions for grades K-5 and grades 6-12. One national winner from each grade division was selected from approximately 2,300 submitted designs. The prize for the two winners was a virtual discussion for their classrooms with Janet Petro, the director of NASA’s Kennedy Space Center in Florida. 

The Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge taps into the ingenuity of undergraduate and graduate students to help advance capabilities and technologies that could support future NASA missions. Students gain real world experience by incorporating their coursework into aerospace design concepts and working in a team environment. In 2021, teams tackled the challenge of lunar dust and designed, built, and tested their solutions in a simulated lunar environment using nearly $1 million in funding across all teams from NASA and National Space Grant College and Fellowship consortia. The top prize Artemis Award went to Washington State University, whose concept uses a liquid cryogen spray bar and a handheld sprayer to clean dust from spacesuits. 

Every fall, NASA’s Student Launch accepts proposals from U.S. students from middle school to higher education to participate in a hands-on competition to design, build, launch, and fly payloads and components on high-power rockets in support of NASA research. The challenge that launched in Fall 2022 concluded in April 2023 with the launch of more than 40 rockets, each carrying a scientific payload nearly one-mile-high above ground level. 

“As a young woman, it’s important to be seen leading a team, managing resources, and meeting critical deadlines with NASA,” said Sindhu Belki, an aerospace engineering major from the University of Alabama. “I’m glad NASA provides this opportunity to be a role model to girls and women interested in space exploration.” 

Following two years of virtual events, high school and college teams compete in NASA’s Student Launch rocketry competition April 23.
Following two years of virtual events, high school and college teams compete in NASA’s Student Launch rocketry competition April 23.

Both high school and higher education students participated in the Human Exploration Rover Challenge, an annual competition that asks students to engineer and test human-powered vehicles designed to drive on otherworldly surfaces. Teams competed based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing safety and design reviews with NASA engineers. The 2023 competition, which opened in August 2022, included student teams from 16 states, the District of Columbia, and Puerto Rico, as well as several international teams. Escambia High School of Pensacola, Florida, and University of Alabama in Huntsville placed first in their divisions. 

“By operating within real-world constraints, students gain authentic knowledge to better imagine and develop innovative technologies which could be used in future NASA missions,” said Kevin McGhaw, Director, NASA’s Office of STEM Engagement Southeast Region. 

Students competing in NASA’s 2022 Human Exploration Rover Challenge work on building their rover.
Students competing in NASA’s 2022 Human Exploration Rover Challenge work on building their rover.

Storytelling for Science and Space

The NASA Earth Science in Action Comic Strip Contest invited high school students and the general public over 18 years old to use their artistic abilities to tell Earth science success stories from three story prompts. Each of the prompts highlighted how NASA’s satellite data supported communities and ecosystems at risk. The contest was designed to inspire participants and readers to learn how NASA Earth science makes a difference to communities around the world. The winners received publicity and recognition from the SciArt Exchange and NASA. 

The future of space exploration is in good hands.”

Mike Kincaid

Mike Kincaid

Associate Administrator for the NASA Office of STEM Engagement

The first and second Power to Explore Student Writing Challenges were open to K-12 students in fiscal years 2021 and 2022 to encourage students to learn more about Radioisotope Power Systems (RPS). The first challenge asked students to learn how RPS provide power at the extremes of our solar system, then to celebrate their own unique power, with 30 total winning essays. The second challenge asked students to dream up a new RPS-powered space mission based on their research. Out of 45 semifinalists, three finalists in each grade category (K-4, 5-8, 9-12) were invited to discuss their mission concepts with a NASA scientist or engineer during an exclusive virtual event. From the finalists, three winners were selected from each category. 

The Artemis Moon Pod Essay Contest sought creative concepts from K-12 students describing an imagined journey to the Moon – including their crew and the technology they would leave on the lunar surface to help future astronauts. Nearly 14,000 students competed, with three grand prize winners in each of the grade categories (K-4, 5-8, 9-12) winning a trip to view the Artemis I launch at NASA’s Kennedy Space Center in Florida. 

“I can’t tell you how inspiring and energizing it’s been to read these essays and see the students’ enthusiasm and creativity in action,” said Mike Kincaid, NASA’s associate administrator for the Office of STEM Engagement. “The future of space exploration is in good hands.” 

Share

Details

Last Updated
Nov 07, 2023

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      SPoC and DAF senior leaders came together to discuss exercising for Great Power Competition during a panel at Air, Space and Cyber Conference.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint
      This photo taken by NASA’s Mars rover Curiosity of ‘Balloon Dome’ covers a low dome-like structure formed by the light-toned slab-like rocks. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4301 — Martian day 4,301 of the Mars Science Laboratory mission — on Sept. 11, 2024, at 09:14:42 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Sept. 11, 2024
      The rover is on its way from the Tungsten Hills site to the next priority site for Gediz Vallis channel exploration, in which we plan to get in close enough for arm science to one of the numerous large dark-toned “float” blocks in the channel and also to one of the light-toned slabs.  We have seen some dark blocks in the channel that seem to be related to the Stimson formation material that the rover encountered earlier in the mission, but some seem like they could be something different. We don’t think any of them originated in the channel so they have to come from somewhere higher up that the rover hasn’t been, and we’re interested in how they were transported down into the channel.
      We aren’t there yet, but the 4302-4303 plan’s activities include some important longer-range characterization of the dark-toned and light-toned materials via imaging. Context for the future close-up science on the dark-toned blocks will be provided by the Mastcam mosaics named “Bakeoven Meadow” and “Balloon Dome.”  The broad Balloon Dome mosaic also covers a low dome-like structure formed by the light-toned slab-like rocks (pictured).  Smaller mosaics will cover a pair of targets that include contacts where other types of light-toned and dark-toned material occur next to each other in the same block: “Rattlesnake Creek” which appears to be in place, and “Casa Diablo Hot Springs,” which is a float.
      The rover’s arm workspace provided an opportunity for present-day aeolian science on the sandy-looking ripple, Sandy Meadow. Mastcam stereo imaging will document the shape of the ripple, while a suite of high-resolution MAHLI images will tell us something about the particle size of the grains in it.  The modern environment will also be monitored via a suprahorizon observation, a dust devil survey, and imaging of the rover deck to look for dust movement.
      The workspace included small examples of the dark float blocks, so the composition of one of them will be measured by both APXS and ChemCam LIBS as targets “Lucy’s Foot Pass” and “Colt Lake” respectively.
      In the meantime, the Mastcam Boneyard Meadow mosaic will provide a look back at the Tungsten Hills dark rippled block along its bedding plane to try to narrow down the origin of the ripples and the potential roles of water vs. wind in their formation.
      Communication remains a challenge for the rover in this location. During planning, the rover’s drive was shifted from the second sol to the first sol in order to increase the downlink data volume available for the post-drive imaging, thereby enabling better planning at the science waypoint we expect to reach in the weekend plan. However, maintaining communications will require the rover to end its drive in a narrow range of orientations, which could make approaching our next science target a bit tricky.  We’ll find out on Friday!
      Written by: Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
      Edited by: Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      2 min read Sols 4297-4299: This Way to Tungsten Hills


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A laser powder directed energy deposition (LP-DED) 3D printer at RPM Innovations’ facility additively manufactures a large-scale aerospike rocket engine nozzle from one of Elementum 3D’s specialized, 3D-printable aluminum alloys.RPM Innovations Inc. In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.

      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.

      The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at Marshall Space Flight Center. Credit: NASA NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.

      Meanwhile, a team at NASA’s Marshall Space Flight Center in Huntsville, Alabama, was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.

      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 
      Read More Share
      Details
      Last Updated Sep 12, 2024 Related Terms
      Technology Transfer & Spinoffs Marshall Space Flight Center Spinoffs Technology Transfer Explore More
      22 min read The Marshall Star for September 11, 2024
      Article 21 hours ago 1 min read Gateway Space Station in 3D
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 3 days ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ 23 Min Read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The Next Full Moon is a Partial Lunar Eclipse; a SuperMoon; the Corn Moon; the Harvest Moon; the Fruit or Barley Moon; the end of Ganesh Chaturthi and the start of Pitru Paksha; Madhu Purnima; the Mid-Autumn, Mooncake, or Reunion Festival Moon; Chuseok; and Imomeigetsu or the Potato Harvest Moon.
      The full Moon will be Tuesday night, September 17, 2024, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars will show this full Moon on Wednesday based on Greenwich or Universal Time. The Moon will appear full for about three days, from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the Earth’s partial shadow at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with only the top 8 percent of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      The phases of the Moon for September 2024. NASA/JPL-Caltech This will be a supermoon. The term “supermoon” was coined by astrologer Richard Nolle in 1979 as either a new or full Moon that occurs when the Moon is within 90% of its closest to Earth. Since we can’t see new Moons, what has the public’s attention are full supermoons, the biggest and brightest Moons of the year. Although different publications use different thresholds for deciding which full Moons qualify, most agree this will be the second of four consecutive supermoons (effectively tied with the full Moon in October for the closest of the year).
      The Maine Farmer’s Almanac first published “Indian” names for the full Moons in the 1930s and these names have become widely known and used. According to this almanac, as the full Moon in September the Algonquin tribes in what is now the northeastern USA called this the Corn Moon, as this was the time for gathering their main staple crops of corn, pumpkins, squash, beans, and wild rice.
      As the full Moon closest to the autumnal equinox, this is the Harvest Moon. The first known written use of this name in the English language (per the Oxford English Dictionary) was in 1706. During the fall harvest season farmers sometimes need to work late into the night by moonlight. On average moonrise is about 50 minutes later each night. Around the Harvest Moon this time is shorter, about 25 minutes for the latitude of Washington, DC, and only 10 to 20 minutes farther north in Canada and Europe.
      Other European names for this full Moon are the Fruit Moon, as a number of fruits ripen as the end of summer approaches, and the Barley Moon, from the harvesting and threshing of barley.
      For Hindus, this full Moon marks the end of Ganesh Chaturthi and the start of Pitru Paksha. Ganesh Chaturthi (also called Vinayaka Chaturthi or Vinayaka Chavithi) is a 10 or 11 day festival honoring the god Ganesha that ends with this full Moon. Ganesha is easily recognized by his elephant head and is worshiped as the god of beginnings, wisdom, arts and sciences, and as the remover of obstacles. Throughout the festival celebrants offer food, sweets, and prayers to clay statues of Ganesha at home and on public stages. Traditions include chanting of Vedic hymns and Hindu texts, prayers, and fasting. On the last day (near the full Moon), people carry the statues to a nearby river or ocean and immerse them. As the clay dissolves, Ganesha is believed to return to his parents, the god Shiva and goddess Parvati, on Mount Kailash.
      Pitru Paksha (fortnight of the ancestors) is a 15 days long festival that ends with the new Moon. During this time, Hindus honor their ancestors (pitrs) with rituals, food offerings, and scripture reading. Pitru Paksha is also known by a number of other names.
      For some Buddhists in Bangladesh and Thailand this full Moon is Madhu Purnima, the Honey Full Moon Festival or the Honey-offering Festival. The legend is that when the Buddha was trying to bring peace between two factions in a forest, an elephant and a monkey fed him, with the elephant offering fruit and the monkey offering a honeycomb.
      In China, Vietnam, and some other Asian countries, this full Moon corresponds with the Mid-Autumn Festival, a traditional harvest festival. In China, other names for this festival include the Moon Festival, the Mooncake Festival, and the Reunion Festival (with wives visiting their parents then returning to celebrate with their husbands and his parents). Part of the festival includes offerings to the Moon Goddess Chang’e (the name the China National Space Agency gives their lunar missions).
      In Korea, this full Moon corresponds with the harvest festival Chuseok, during which Koreans return to their traditional hometowns to pay respect to the spirits of their ancestors.
      This full Moon corresponds with the first of two Japanese Tsukimi or “Moon-Viewing” festivals, also called Imomeigetsu (which translates as “potato harvest Moon”) because of the tradition of offering sweet potatoes to the Moon. These festivities have become so popular that they are often extended for several days after the full Moon.
      In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the eighth month of the Chinese year of the Dragon and Rabi’ al-Awwal in the Islamic calendar, the month in which many Muslims celebrate Mawlid, the birth of the Prophet Muhammad. This full Moon is near the middle of Elul in the Hebrew calendar. Elul is a time of preparation for the High Holy Days of Rosh Hashanah and Yom Kippur. Customs include granting and asking others for forgiveness as well as beginning or ending all letters with the wish that the recipient will have a good year.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Go out and observe the Moon, enjoy this harvest season (including corn, fruit, and sweet potatoes, and honey), remember your ancestors, stay in touch with your parents, and forgive and ask forgiveness. Here’s wishing you a good year!
      Comet C/2023 A3 (Tsuchinshan-ATLAS)
      Pay attention to the news about Comet C/2023 A3 (Tsuchinshan-ATLAS)! There are a number of “ifs” so we don’t like to raise expectations. Similar visitors from the Oort Cloud have broken apart and fizzled out as they passed close to the Sun. If this comet survives its passage by the Sun (closest approach on September 27, 2024) and if the amount of gas and dust it gives off does not decrease significantly, this might be one of the best comets in a long time. If it strongly scatters sunlight towards the Earth it might even be visible in the glow of dusk just after its closest approach to Earth on October 12.
      From the Washington, DC area and similar latitudes, this comet will be above the horizon before morning twilight begins from September 22 through October 4, with the current brightness curve predicting a steady increase in brightness from about visual magnitude 4 to near 3 (the smaller the number, the brighter the object). As it brightens it may be visible under dark sky conditions and even more impressive through binoculars or a telescope, although towards the start and end of this period it may be too low on the horizon to see when the sky is completely dark.  
      Between about October 4 and October 11 the Sun’s glare will mask visibility from the Northern Hemisphere. Check your local news or web sites for viewing information for your latitude. For example, Sky and Telescope reports that Southern Hemisphere skywatchers should fare better.
      Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM EDT. Around closest approach the comet’s brightness is predicted to peak at about visual magnitude 3 (similar to many stars). Forward scattering might increase the brightness significantly, possibly as high as -1 (brighter than every star except Sirius). How bright the comet actually appears will depend upon how much gas and dust it is giving off, which can change quickly. Also, brightness comparisons between comets and stars can be misleading as the light of the comet is spread out making it less distinct than a star with the same brightness.
      The best time to look should be the evenings on and shortly after October 12 with the comet above the western horizon after sunset. The evening of October 12 the comet will be 4 degrees above the western horizon as evening twilight ends, similar in altitude and to the right of Venus. The comet is expected to dim as it moves away from the Earth, but will appear higher in a darker sky and set later each evening, which could make it easier to see. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. The brightness will decrease to about magnitude 6 by the end of October.
      Meteor Showers
      During this lunar cycle four minor meteors showers are predicted to peak at 5 or fewer visible meteors per hour (under ideal viewing conditions), making them basically not visible from our light-polluted urban areas.
      Evening Sky Highlights
      On the evening of Tuesday, September 17 (the evening of the full Moon), as twilight ends (at 8:10 PM EDT), the rising Moon will be 11 degrees above the east-southeastern horizon with Saturn to the upper right at 14 degrees above the horizon. Later in the evening the partial shadow of the Earth will cover a small upper part of the Moon. Bright Venus will be 2 degrees above the west-southwestern horizon with the star Spica on the horizon to the lower left. The bright star closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 87 degrees above the western horizon. Vega is part of the Summer Triangle along with Deneb and Altair. It is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left along the west-southwestern horizon, appearing slightly higher each evening. The waxing Moon will pass by Venus on October 5, Antares on October 7, and Saturn on October 14. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM. Assuming it survives its pass by the Sun on September 27 and depending upon how much gas and dust it gives off, it could be a good show in the evenings on and after October 12. See the comet summary above and keep an eye on the news for updates on this comet.
      By the evening of Thursday, October 17 (the evening of the full Moon after next), as twilight ends (at 7:24 PM EDT), the rising Moon will be 9 degrees above the eastern horizon. Saturn will be 27 degrees above the southeastern horizon. Bright Venus will be 6 degrees above the west-southwestern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 22 degrees above the western horizon. The bright star closest to overhead will be Deneb at 80 degrees above the northeastern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.
      Morning Sky Highlights
      On the morning of Wednesday, September 18 (the morning of the night of the full Moon), as twilight begins (at 5:55 AM EDT), the setting full Moon will be 15 degrees above the west-southwestern horizon. The brightest planet in the sky will be Jupiter at 71 degrees above the south-south eastern horizon. Near Jupiter will be Mars at 61 degrees above the east-southeastern horizon. Saturn will be below the Moon at 1 degree above the western horizon. The bright star appearing closest to overhead will be Capella, the brightest star in the constellation Auriga the charioteer, at 80 degrees above the northeastern horizon. Although we see Capella as a single star (the 6th brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 lightyears from us.
      As this lunar cycle progresses, Jupiter, Mars, Saturn, and the background of stars will appear to shift westward each evening. After September 19 Saturn set before morning twilight begins. The waning Moon will pass by the Pleiades star cluster on September 22, Mars on September 25, Pollux on September 26, and Regulus on September 29. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins from September 22 through October 4. Comets are notoriously difficult to predict, but if the amount of gas and dust it gives off remains constant it should increase in brightness each morning. See the comet summary above and keep an eye on the news for updates on this comet.
      By the morning of Thursday, October 17 (the morning of the full Moon after next), as twilight begins (at 6:22 AM EDT), the setting full Moon will be 11 degrees above the western horizon. The brightest planet in the sky will be Jupiter at 63 degrees above the west-southwestern horizon. Mars will be at 72 degrees above the south-southeastern horizon. The bright star appearing closest to overhead will be Pollux, the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini, at 75 degrees above the southeastern horizon. Pollux is an orange tinted star about 34 lightyears from Earth. It is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.
      Detailed Daily Guide
      Here for your reference is a day-by-day listing of celestial events between now and the full Moon on October 17, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Saturday night, September 14, is International Observe the Moon Night! See https://moon.nasa.gov/observe-the-moon-night/about/overview/ for more information.
      Our 24 hour clock is based on the average length of the solar day. Solar noon on Sunday, September 15 to solar noon on Monday, September 16, will be the shortest solar day of the year, 23 hours, 59 minutes, and 38.6 seconds long.
      Monday night into Tuesday morning, September 16 to 17, Saturn will appear near the full Moon. As evening twilight ends (at 8:12 PM EDT) Saturn will be 6 degrees to the left of the Moon. When the Moon reaches its highest for the night (at 12:17 AM) Saturn will be 4 degrees to the upper left. By the time morning twilight begins (at 5:54 AM) the Moon will be 1 degree above the west-southwestern horizon with Saturn 1 degree above the Moon. For parts of western North America and across the Pacific Ocean towards Australia the Moon will pass in front of Saturn. See http://lunar-occultations.com/iota/planets/0917saturn.htm for a map and information on the areas that will see this occultation.
      Tuesday morning, September 17, will be the last morning that Mercury will be above the horizon as morning twilight begins (at 5:54 AM EDT).
      As mentioned above, the full Moon will be Tuesday night, September 17, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars are based on Greenwich or Universal Time and will show this full Moon on Wednesday. The Moon will appear full for about three days from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the partial shadow of the Earth at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with just the top 8.4% of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      This will be the second of four consecutive supermoons, appearing larger than last month’s supermoon and effectively tied with the full Moon in October for the closest full Moon of the year.
      Tuesday and Wednesday evenings, September 17 and 18, the star Spica will appear a little over 2 degrees from the bright planet Venus. On Tuesday evening as evening twilight ends (at 8:10 PM EDT) Spica will be to the lower left of Venus and on the verge of setting on the west-southwestern horizon. Wednesday evening Spica will be a few hundredths of a degree closer and will appear below Venus, but will set about 2 minutes before evening twilight ends.
      Wednesday morning September 18, at 9:29 AM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      Thursday morning, September 19, will be the last morning the planet Saturn will be above the western horizon as morning twilight begins.
      If you are interested in spotting the planet Neptune through a telescope, Friday evening, September 20, will be when it will be at its closest and brightest for the year. Neptune will reach its highest in the sky early Saturday morning (at 1:02 AM EDT).
      Saturday night into Sunday morning, September 21 to 22, the Pleiades star cluster will appear near the waning gibbous Moon. The Pleiades will be 5 degrees to the lower left as they rise on the east-northeastern horizon (at 9:23 PM EDT), 1.5 degrees to the upper left by the time the Moon reaches its highest for the night (at 4:44 AM), and less than 1 degree to the upper left as morning twilight begins (at 5:59 AM). The Moon will actually pass through the Pleiades (at about 8 AM) when daylight will mask these stars from view.
      Sunday morning, September 22, will be the first morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting it at visual magnitude 4. Unless it breaks apart, this comet is likely to brighten each morning until October 4 (after which it will no longer be above the horizon before twilight begins).
      Sunday morning, September 22, at 8:44 AM EDT, will be the autumnal equinox, the astronomical end of summer and start of fall.
      Monday night into Tuesday morning, September 23 to 24, the bright planet Jupiter will appear to the lower right of the waning half-full Moon. Jupiter will be 6 degrees to the lower right as it rises on the east-northeastern horizon (at 10:54 PM EDT). Jupiter will shift slightly clockwise as it moves away from the Moon.
      Thursday afternoon, September 24, the waning Moon will appear half-full as it reaches its last quarter at 2:50 PM EDT (when we can’t see it).
      Wednesday morning, September 25, the planet Mars will appear below the waning crescent Moon. Mars will be 6 degrees below the Moon as it rises on the east-northeastern horizon (at 12:16 AM EDT). Mars will be 5 degrees to the lower right as morning twilight begins (at 6:01 AM).
      Thursday morning, September 26, the star Pollux (the brighter of the twin stars in the constellation Gemini the twins) will appear near the waning crescent Moon. Pollux will be 3 degrees to the lower left as it rises on the northeastern horizon (at 12:47 AM EDT) and will be 2 degrees to the upper left by the time morning twilight begins (at 6:02 AM).
      Friday afternoon, September 27, at around 2 PM EDT, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to the Sun. This comet has an inbound orbital period of millions of years and may gain enough energy from this flyby of the Sun to leave the solar system forever.
      Sunday morning, September 29, the star Regulus will appear near the waning crescent Moon. As Regulus rises on the east-northeastern horizon (at 4:01 AM EDT) it will be 2.5 degrees to the lower right of the Moon. Morning twilight will begin 2 hours later (at 6:05 AM) with Regulus 3 degrees to the right.
      Monday afternoon, September 30, the planet Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth, it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of twilight on the west-southwestern horizon towards the end of October (depending upon viewing conditions).
      Wednesday, October 2, at 2:46 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and is usually not visible. For much of the Pacific Ocean as well as the southern part of South America, part of Antarctica, and a thin slice of the southwestern Atlantic, the Moon will block some of the Sun in a partial eclipse. For a narrow strip from the Pacific south of the Hawaiian Islands across the Pacific, part of Chile and Argentina, and into the southwestern Atlantic Ocean, the Moon will actually pass in front of the Sun, blocking most of it from view in an annular solar eclipse. Because the Moon will be at apogee (its farthest from the Earth) just 70 minutes later (at 3:56 PM) it will not block the entire Sun from view and this will not be a total solar eclipse.
      The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Sundown on Wednesday, October 2, will be the start of Rosh Hashanah (the Head of the Year), the two-day Jewish New Year celebration that will end at sundown on Friday, October 4. Rosh Hashanah is the first of a series of holidays in Tishrei, the first month of the Hebrew calendar. The tenth day of Tishrei is Yom Kippur, the Day of Atonement. The 10 days from Rosh Hashanah to Yom Kippur, called the Days of Awe, are a time to reflect on the mistakes of the past year and make resolutions for the new year. The fifteenth day of Tishrei (close to the full Moon after next) is the start of the 7-day Sukkot holiday.
      The ninth month of the Chinese year of the Dragon starts on Thursday, October 3.
      In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday evening, October 3, will probably mark the beginning of Rabiʽ al-Thani, also known as Rabi’ al-Akhirah.
      Friday, October 4, will be the last morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting a visual magnitude near 3, similar in brightness to many visible stars. It may be visible to the naked eye under dark sky conditions and even more impressive through binoculars or a telescope.
      Saturday evening, October 5, you may be able to see the thin waxing crescent Moon 4.5 degrees to the lower left of the bright planet Venus. As evening twilight ends (at 7:41 PM EDT) the Moon will be a degree above the west-southwestern horizon. The Moon will set first 14 minutes later (at 7:55 PM).
      Monday evening, October 7, the bright star Antares will appear 2 degrees to the right of the waxing crescent Moon. As evening twilight ends (at 7:38 PM EDT) the Moon will be 11 degrees above the southwestern horizon. Antares will set first about 20 minutes later (at 9 PM).
      Thursday afternoon, October 10, the Moon will appear half-full as it reaches its first quarter at 2:55 PM EDT.
      Saturday morning, October 12, at 11:10 AM, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth. If it survives its pass by the Sun this will likely be when it will be near its brightest. Although it will be on the horizon as evening twilight ends on Friday, our first chance to see it above the horizon as it emerges from the glow of dusk likely will be Saturday evening, when the comet will be 4 degrees above the western horizon as evening twilight ends (at 7:31 PM EDT), similar in altitude and to the right of Venus. Over the next few nights the comet will likely dim as it moves away from the Earth, but also appear higher in the sky and set later each evening, giving us more time and darker skies to look for this comet. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. Current brightness curves predict it will dim quickly and will be below magnitude 6 by the end of October. How bright the comet will be and how quickly it actually dims will depend upon the gas and dust it is giving off, which can vary quickly and unpredictably, but it could be a good show in the evenings after October 12.
      Monday evening, October 14, the planet Saturn will appear near the waxing gibbous Moon. As evening twilight ends (at 7:28 PM EDT) Saturn will be 4 degrees to the upper right. The Moon will reach its highest for the night about 3.5 hours later (at 10:53 PM) with Saturn 5 degrees to the lower right. The pair will continue to separate, with Saturn setting first 5 hours after that (at 4:09 AM). For parts of Southern Asia and Africa the Moon will block Saturn from view, see http://lunar-occultations.com/iota/planets/1014saturn.htm for a map and information on the areas that will acually see this occultation.
      Wednesday evening, October 16, at 8:57 PM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      The full Moon after next will be Thursday morning, October 17, 2024, at 7:26 AM EDT. This will be late Wednesday night in the International Date Line West time zone and early Friday morning from New Zealand Time eastwards to the International Date Line. This will be the third of four consecutive supermoons (and the brightest by a tiny margin). The Moon will appear full for about 3 days around this time, from Tuesday evening through Friday morning.
      Keep Exploring Discover More Topics From NASA
      Night Sky Network



      Explore the Night Sky



      Tips & Guides



      Skywatching


      View the full article
    • By NASA
      4 min read
      NASA Science for Your Classroom: Opportunities for Educators
      The summer season for educators can be a time of rest and rejuvenation, but it can also offer opportunities for professional learning with new colleagues beyond your own school. The following programs from NASA’s Science Activation Program offer end-of-summer/early-fall curricular resources and connections with other educators that can help you bring new science ideas and activities into your instructional practice.  
      Celebrating the Moon & Moon Rocks with NASA – A Webinar for Educators
      Join us, as the world awaits this year’s International Observe the Moon Night (InOMN on September 14, 2024), for this free NASA Astromaterials Research and Exploration Science (ARES) interactive webinar focusing on the Moon, Moon rocks, Apollo and future Artemis Missions! This session will be geared towards educators and their students (targeting grades 5-9 but other grade levels, college students, and individual educators are welcome to participate). Participants will interact with Dr. Juliane Gross, Artemis Curation Lead at the NASA Johnson Space Center in Houston, TX. The presentation will last approximately 45 minutes followed by an optional 15-30 minutes of Q&A. If you can’t participate live, feel free to register to receive an archived recording of the presentation. 
      When: September 11 at 1:00 – 2:15 p.m. EDT Learn more and register Infusing Space Rock Content and More into Learning Environments
      Join NASA Astromaterials Research and Exploration Science for an interactive webinar focusing on hands-on and digital Earth and Space Science resources appropriate for both formal and informal learning settings. This session, geared towards educators who work with grades 3 through HS or general audiences at public events, will prepare you to engage learners with content associated with Moon rocks, meteorites, samples from asteroids and more! Presentation will last approximately 50 minutes followed by an optional 10+ minutes of Q&A. Those who register below will receive an archived recording of the presentation. 
      When: September 17 at  8 p.m. EDT  Register now Spark Curiosity with Infiniscope’s Free Resources!
      Infiniscope is a NASA-funded project focused on sparking curiosity, fostering exploration, and delivering digital content and tools that transform the learning experience. NGSS-Designed digital learning experiences are just the beginning. Whether you want classroom-ready content or the tools and support to build your own, we’ve got you covered. 
      If you’re a middle school or highschool educator, join the webinars below and discover the incredible FREE resources waiting for you at Infiniscope.org. In this guided tour, you’ll learn how to: search for classroom-ready content on the website, find educator resources and detailed lesson information, enroll students in lessons and collections, sign up for future training events, access the virtual field trip creator, and get more information on our adaptive lesson builder. Learn more about Infiniscope.
      Intro to Infiniscope Registration – September 17 at 4 p.m. EDT Intro to Infiniscope Registration – October 22  at 6 p.m. EDT Take Your Learners Anywhere with Tour It!
      With Tour It, Infiniscope’s free virtual field trip creator, you can make place-based learning accessible to all your learners, boosting engagement and learning outcomes while enabling them to build personal connections. Tour It is your gateway to creating captivating virtual field trips! As a member of the Infiniscope teaching network, you’ll have exclusive access to this amazing tool that brings immersive learning experiences to life. Whether you’re a seasoned educator or just starting your journey, Tour It empowers you to craft engaging and interactive virtual tours that inspire learners and enable them to build personal connections to a place. Learn more about Tour it.
      Exploring Place-Based Learning Registration – September 17 at 4 p.m. EDT Planning Your Virtual Field Trip Registration – October 22 at 6 p.m. EDT Heliophysics Webinars for Educators: Physics in an Astronomy Context
      NASA’s Heliophysics Education Activation Team (HEAT) and the American Association of Physics Teachers (AAPT) have put together a free, monthly, virtual workshop series for teachers of astrophysics taught in the context of introductory and upper division physics and astronomy courses. While these workshops are intended for secondary- and tertiary-level teachers who teach in formal classroom contexts, other educators are also welcome if the content covered is appropriate to your teaching context. 
      These virtual gatherings of 25-50 teachers occur one Saturday per month and provide an astrophysics mini-lecture, a small group engagement with the core activity, and discussion time to connect with like-minded educators. 
      Dates and Topics: 
      September, 21, 2024 – Coronal Mass Ejection Science October 12, 2024 – Planetary Magnetism Science November 9, 2024 – Auroral Currents December 7, 2024 – Star Spectra Science Time: 1 – 2:30 p.m. EDT
      Register here 
      We hope these resources will help prepare you for a wonderful year of amazing science learning… and beyond!
      Share








      Details
      Last Updated Sep 09, 2024 Related Terms
      Learning Resources Science Activation Explore More
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      3 days ago
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      5 days ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      6 days ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...