Jump to content

First Science Images Released From ESA Mission With NASA Contributions


NASA

Recommended Posts

  • Publishers
The image shows thousands of galaxies across the black expanse of space. The closest thousand or so galaxies appear as small disks of spiraling material, surrounded by halos of yellow and white light. The background is scattered with a hundred thousand more distant galaxies of different shapes, ranging in color from white to yellow to red. Most galaxies are so far away they appear as single points of light.
One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

The new images from the Euclid mission include a cluster of thousands of distant galaxies, demonstrating the spacecraft’s unique abilities. 

The Euclid mission, which will investigate the mysteries of dark matter and dark energy, released its first five science images Tuesday, Nov. 7 The observatory, led by ESA (European Space Agency) with NASA contributions, is scheduled to begin regular science operations in early 2024.

The new images include views of a large cluster of thousands of distant galaxies, close-ups of two nearby galaxies, a gravitationally bound group of stars called a globular cluster, and a nebula (a cloud of gas and dust in space where stars form) – all depicted in vibrant colors.

“The Euclid observatory will uncover a treasure trove of scientific discoveries that will be used across the world, including by U.S. scientists, for years to come,” said Nicola Fox, associate administrator, Science Mission Directorate, at NASA Headquarters in Washington. “Together, NASA and ESA are paving the way for a new era of cosmology for NASA’s forthcoming Nancy Grace Roman Space Telescope, which will build upon what Euclid learns and will additionally survey objects on the outskirts of our solar system, discover thousands of new planets, explore nearby galaxies, and more.”

A spiral galaxy is visible at the centre of the image. The galaxy is made up of spiral arms that wrap around a white central region. The arms are dusty and sprinkled with purple, pink, and white smudges. The background of space is filled with stars and points of light. A few of the stars are larger than the rest and have diffraction spikes.
The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Euclid launched on July 1 from Cape Canaveral, Florida, then traveled nearly 1 million miles to its vantage point. Following a period of commissioning (testing of the instruments and other components), the space telescope is performing as expected.

NASA’s Jet Propulsion Laboratory in Southern California delivered critical hardware for one of the Euclid spacecraft’s instruments. In addition, NASA has established a U.S.-based Euclid science data center, and NASA-funded science teams will join other Euclid scientists in studying dark energy, galaxy evolution, and dark matter. The agency’s Nancy Grace Roman mission will also study dark energy – in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work.

Surveying the Dark Universe

During its planned six-year mission, Euclid will produce the most extensive 3D map of the universe yet, covering nearly one-third of the sky and containing billions of galaxies up to 10 billion light-years away from Earth.

3-irregular-galaxy-ngc-6822.jpg?w=2048
The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

To do this, Euclid needs a wide field of view, which enabled these new images covering a relatively large area. In this way, Euclid differs from targeted observatories like NASA’s James Webb Space Telescope that focus on a smaller area of the sky at any one time but typically offer higher-resolution images. Wide-field observatories like Euclid can observe large sections of the sky much faster than targeted telescopes. In addition, Euclid has high resolution compared to previous survey missions, which means it will be able to see more galaxies in each image than previous telescopes.

For example, Euclid’s wide view was able to capture the entirety of the Perseus galaxy cluster, and many galaxies beyond it, in just one image. Located 240 million light-years from Earth, Perseus is among the most massive structures known in the universe. Euclid’s full survey will ultimately cover an area 30,000 times larger than this image.

This square astronomical image is divided horizontally by the edge of a white and orange cloud on the bottom half. Within this region is a section of cloud shaped like a horse’s head. The top half of the image contains a faint purple haze that fades away to reveal the blackness of space near the top of the image, which is speckled with stars.
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. Full image here.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

The telescope’s survey approach is necessary to study dark energy, the mysterious driver behind our universe’s accelerating expansion. While gravity should pull everything in the universe together, everything is instead moving apart faster and faster. “Dark energy” is the term scientists use for this unexplained expansion.

To study the phenomenon, scientists will map the presence of another cosmic mystery, dark matter. This invisible substance can be observed only by its gravitational effect on “regular” matter and objects around it, like stars, galaxies, and planets. Dark matter is five times more common in the cosmos than regular matter, so if dark energy’s expansive influence on the universe has changed over time, the change should be recorded in how dark matter is distributed on large scales across the universe, and Euclid’s 3D map should capture it.

e2-globular-cluster-ngc-6397.jpg?w=2048
This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

“Euclid’s first images mark the beginning of a new era of studying dark matter and dark energy,” said Mike Seiffert, Euclid project scientist at JPL. “This is the first space telescope dedicated to dark universe studies, and the sheer scale of the data we’re going to get out of this will be unlike anything we’ve had before. These are big mysteries, so it’s exciting for the international cosmology community to see this day finally arrive.”

NASA’s Roman mission will study a smaller section of sky than Euclid, but it will provide higher-resolution images of hundreds of millions of galaxies and peer deeper into the universe’s past, providing complementary information. Scheduled to launch by May 2027.

The data from the new Euclid images is now available to the scientific community, and scientific papers analysing that data are expected to follow. As the mission progresses, Euclid’s bank of data will grow. New batches will be released once per year and will be available to the global scientific community via the Astronomy Science Archives hosted at ESA’s European Space Astronomy Centre in Spain.

More About the Mission

Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium – consisting of more than 2,000 scientists from 300 institutes in 13 European countries, the U.S., Canada, and Japan – is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. NASA provided the detectors of the Near-Infrared Spectrometer and Photometer, NISP. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.

News Media Contacts

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

Elizabeth Landau
NASA Headquarters, Washington
202-358-0845
elandau@nasa.gov

ESA Media Relations
media@esa.int

2023-161

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By NASA
      4 Min Read NASA’s Hidden Figures Honored with Congressional Gold Medals
      Sen. Shelly Moore Capito (R-WV), delivers remarks during a Congressional Gold Medal ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington. Credits: NASA/Joel Kowsky A simple turn of phrase was all it took for U.S. Sen. Shelley Moore Capito of Katherine Johnson’s home state of West Virginia to capture the feeling in Emancipation Hall at the U.S. Capitol in Washington.
      “It’s been said that Katherine Johnson counted everything,” she said. “But today we’re here to celebrate the one thing even she couldn’t count, and that’s the impact that she and her colleagues have had on the lives of students, teachers, and explorers.”
      That sense of admiration and awe toward the legacy and impact of NASA’s Hidden Figures was palpable Wednesday during a Congressional Gold Medal Ceremony to honor the women’s work and achievements during the space race.
      The Congressional Gold Medal in recognition of Katherine Johnson in recognition of her service to the United States as a Mathematician is seen during a ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington.  Katherine Johnson’s family accepted this gold medal on her behalf.NASA/Joel Kowsky The ceremony, hosted by House Speaker Mike Johnson, honored Johnson, Dorothy Vaughan, Mary Jackson, and Dr. Christine Darden of NASA’s Langley Research Center in Hampton, Virginia, along with all the other women who served at the agency and its precursor, the National Advisory Committee for Aeronautics, or the NACA, as computers, mathematicians, and engineers.
      “The pioneers we honor today, these Hidden Figures — their courage and imagination brought us to the Moon. And their lessons, their legacy, will send us back to the Moon,” said NASA Administrator Bill Nelson.
      Margot Lee Shetterly, whose 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race,” brought awareness to the stories of NASA’s human computers, spoke at the event.NASA/Joel Kowsky Author Margot Lee Shetterly detailed the stories of the women from NASA Langley in her 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.” Though the book focused on NASA Langley, where Shetterly’s father worked, it helped raise awareness of similar stories around NASA.
      A film adaptation of the book starring Taraji Henson as Johnson, Octavia Spencer as Vaughan, and Janelle Monáe as Jackson came out later that year and further elevated the topic. NASA participated under a Space Act Agreement with 20th Century Fox in activities around the movie, to provide historical guidance and advice during the filmmaking process.
      In her remarks, Shetterly noted that even as the Hidden Figures made such key contributions to NASA and the NACA before it, they remained active in their communities, leading Girl Scout troops and delivering meals to the hungry.
      “They spent countless hours tutoring kids so that those kids, too, would see the power and the beauty of numbers they believed in, tending to the small D democracy that binds us to each other as neighbors and as American citizens,” she said.
      The medal citations were as follows:
      Congressional Gold Medal to Katherine Johnson, in recognition of her service to the United States as a mathematician Congressional Gold Medal to Dr. Christine Darden, for her service to the United States as an aeronautical engineer Congressional Gold Medals in commemoration of the lives of Dorothy Vaughan and Mary Jackson, in recognition of their service to the United States during the space race Congressional Gold Medal in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee Family members of Johnson, Vaughn, Jackson and Dr. Darden accepted medals on their behalves. Dr. Darden watched the ceremony from home.
      House Speaker Mike Johnson and Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples. Mosie accepted the medal awarded in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee for Aeronautics and NASA between the 1930s and the 1970s.NASA/Joel Kowsky Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples, accepted the medal awarded to all NASA’s Hidden Figures. She began her career at NASA’s Johnson Space Center in Houston in the 1970s.
      Mosie thanked Congress for supporting NASA’s campaign to send the first woman and first person of color to the Moon as part of Artemis and the agency’s efforts to provide “opportunities for people, more representative of the way our country looks, to understand humanity’s place in the universe.”
      Several NASA Langley officials attended the event to honor the legacies of the women who worked there.
      “I am humbled by the significant contributions and lasting impact of these women to America’s aeronautics and space programs. Their brilliance and perseverance still echo not just through the halls of NASA Langley, but through the entire Agency,” said NASA Langley’s Acting Center Director Dawn Schaible. “They are an inspiration to me and countless others who have benefited from the paths they forged.”
      Rep. Eddie Bernice Johnson of Texas, who passed away in 2023, introduced H.R. 1396 – Hidden Figures Congressional Gold Medal Act on Feb. 27, 2019. It was signed into law later that year.
      In 2015, President Barack Obama presented Katherine Johnson with the Presidential Medal of Freedom, the nation’s highest civilian honor.
      Brittny McGraw and Joe Atkinson
      NASA Langley Research Center
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Langley Research Center Explore More
      4 min read Going Back-to-School with NASA Data
      Article 3 days ago 3 min read Like a Diamond in the Sky: How to Spot NASA’s Solar Sail Demo in Orbit
      Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators 
      Article 3 weeks ago View the full article
    • By NASA
      3 min read
      NASA Develops Process to Create Very Accurate Eclipse Maps
      New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
      For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
      Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
      The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
      “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow  — the umbra,” said Wright.
      A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
      The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
      A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
      A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
      Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
      This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
      For more about eclipses, refer to:
      https://science.nasa.gov/eclipses
      By Ernie Wright and Susannah Darling
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Nancy Neal-Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-0039
      nancy.n.jones@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      3 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      4 weeks ago
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…


      Article


      4 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...