Jump to content

Internal Heat Drives Jupiter's Giant Storm Eruption


HubbleSite

Recommended Posts

low_STSCI-H-p0806a-k-1340x520.png

Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding this outbreak could be the key to unlock the mysteries buried in the deep Jovian atmosphere. An international team coordinated by Agustin Sánchez-Lavega from the Universidad del País Vasco in Spain presents its findings about this event in the January 24 issue of the journal Nature. The team monitored the new eruption of cloud activity and its evolution with an unprecedented resolution using NASA's Hubble Space Telescope, the NASA Infrared Telescope Facility in Hawaii, and telescopes in the Canary Islands (Spain). A network of smaller telescopes around the world also supported these observations.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A new European Space Agency-backed study shows that the extreme heatwaves of 2023, which fuelled huge wildfires and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change.
      View the full article
    • By NASA
      4 Min Read Student-Built Capsules Endure Heat of Re-entry for NASA Science
      The five capsules of the KREPE-2 mission are pictured on Earth prior to flight. Credits: University of Kentucky. In July 2024, five student-built capsules endured the scorching heat of re-entry through Earth’s atmosphere as part of the second Kentucky Re-Entry Probe Experiment (KREPE-2). Scientists are now analyzing the data from the KREPE-2 experiments, which could advance the development of heat shields that protect spacecraft when they return to Earth.
      The mission was designed to put a variety of heat shield prototypes to the test in authentic re-entry conditions to see how they would perform. These experimental capsules, which were built by students at the University of Kentucky and funded by the NASA Established Program to Stimulate Competitive Research (EPSCoR) within NASA’s Office of STEM Engagement, all survived more than 4,000 degrees Fahrenheit during descent.
      The football-sized capsules also successfully transmitted valuable data via the Iridium satellite network along their fiery journey. The trove of information they provided is currently being analyzed to consider in current and future spacecraft design, and to improve upon designs for future experiments.
      “These data – and the instruments used to obtain the data – assist NASA with designing and assessing the performance of current and new spacecraft that transport crew and cargo to and from space,” said Stan Bouslog, thermal protection system senior discipline expert at NASA’s Johnson Space Center in Houston who served as the agency’s technical monitor for the project.
      Taking the Plunge: Communicating Through a Fiery Descent
      “The only way to ‘test like you fly’ a thermal protection system is to expose it to actual hypersonic flight through an atmosphere,” Bouslog said.
      The self-contained capsules launched aboard an uncrewed Northrop Grumman Cygnus spacecraft in January 2024 along with other cargo bound for the International Space Station. The cargo craft detached from the space station July 12 as the orbiting laboratory flew above the south Atlantic Ocean. As the Cygnus spacecraft began its planned breakup during re-entry, the KREPE-2 capsules detected a signal – a temperature spike or acceleration – to start recording data and were released from the vehicle. At that point, they were traveling at a velocity of about 16,000 miles per hour at an altitude of approximately 180,000 feet.
      The University of Kentucky student team and advisors watched and waited to learn how the capsules had fared.
      As the capsules descended through the atmosphere, one group watched from aboard an aircraft flying near the Cook Islands in the south Pacific Ocean, where they tracked the return of the Cygnus spacecraft. The flight was arranged in partnership with the University of Southern Queensland in Toowoomba, Queensland, Australia, and the University of Stuttgart in Stuttgart, Germany. Alexandre Martin, professor of mechanical and aerospace engineering at the University of Kentucky and the principal investigator for the experiment, was on that flight.
      “We flew in close to the re-entry path to take scientific measurements,” Martin said, adding that they used multiple cameras and spectrometers to observe re-entry. “We now have a much better understanding of the break-up event of the Cygnus vehicle, and thus the release of the capsules.”
      Meanwhile, members of the University of Kentucky’s Hypersonic Institute had gathered at the university to watch as KREPE-2 data arrived via email. All five successfully communicated their flight conditions as they hurtled to Earth.
      “It will take time to extract the data and analyze it,” Martin said. “But the big accomplishment was that every capsule sent data.”
      Members of the University of Kentucky student team have begun analyzing the data to digitally reconstruct the flight environment at the time of transmission, providing key insights for future computer modeling and heat shield design.
      An artist’s rendering of one of the KREPE-2 capsules during re-entry. A. Martin, P. Rodgers, L. Young, J. Adams, University of Kentucky Building on Student Success
      The mission builds on the accomplishments of KREPE-1, which took place in December 2022. In that experiment, two capsules recorded temperature measurements as they re-entered Earth’s atmosphere and relayed that data to the ground.
      The extensive dataset collected during the KREPE-2 re-entry includes heat shield measurements, such as temperature, as well as flight data including pressure, acceleration, and angular velocity. The team also successfully tested a spectrometer that provided spectral data of the shockwave in front of a capsule.
      “KREPE-1 was really to show we could do it,” Martin said. “For KREPE-2, we wanted to fully instrument the capsules and really see what we could learn.”
      KREPE-3 is currently set to take place in 2026.
      The ongoing project has provided valuable opportunities for the University of Kentucky student team, from undergrads to PhD students, to contribute to spaceflight technology innovation.
      “This effort is done by students entirely: fabrication, running simulations, handling all the NASA reviews, and doing all the testing,” Martin said. “We’re there supervising, of course, but it’s always the students who make these missions possible.”
      Related links:
      EPSCoR Space Station Research Explorer: Kentucky Re-entry Probe Experiment-2 Science Launches to Space Station on NASA’s 20th Northrop Grumman Mission Big Goals, Small Package: Enabling Compact Deliveries from Space Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      Established Program to Stimulate Competitive Research
      About STEM Engagement at NASA
      Learning Resources
      View the full article
    • By NASA
      Earth (ESD)Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 4 min read
      Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds
      Tropical thunderstorm with lightning, near the airport of Santa Marta, Colombia. Credit: Oscar van der Velde There’s more to thunderclouds than rain and lightning. Along with visible light emissions, thunderclouds can produce intense bursts of gamma rays, the most energetic form of light, that last for millionths of a second. The clouds can also glow steadily with gamma rays for seconds to minutes at a time.
      Researchers using NASA airborne platforms have now found a new kind of gamma-ray emission that’s shorter in duration than the steady glows and longer than the microsecond bursts. They’re calling it a flickering gamma-ray flash. The discovery fills in a missing link in scientists’ understanding of thundercloud radiation and provides new insights into the mechanisms that produce lightning. The insights, in turn, could lead to more accurate lightning risk estimates for people, aircraft, and spacecraft.
      Researchers from the University of Bergen in Norway led the study in collaboration with scientists from NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the U.S. Naval Research Laboratory, and multiple universities in the U.S., Mexico, Colombia, and Europe. The findings were described in a pair of papers in Nature, published Oct. 2.
      The international research team made their discovery while flying a battery of detectors aboard a NASA ER-2 research aircraft. In July 2023, the ER-2 set out on a series of 10 flights from MacDill Air Force Base in Tampa, Florida. The plane flew figure-eight flight patterns a few miles above tropical thunderclouds in the Caribbean and Central America, providing unprecedented views of cloud activity.
      The scientific payload was developed for the Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper Simulator and Terrestrial Gamma-ray Flashes (ALOFT) campaign. Instrumentation in the payload included weather radars along with multiple sensors for measuring gamma rays, lightning flashes, and microwave emissions from clouds. 
      NASA’s high-flying ER-2 airplane carries instrumentation in this artist’s impression of the ALOFT mission to record gamma rays (colored purple for illustration) from thunderclouds.Credit: NASA/ALOFT team The researchers had hoped ALOFT instruments would observe fast radiation bursts known as terrestrial gamma-ray flashes (TGFs). The flashes, first discovered in 1992 by NASA’s Compton Gamma Ray Observatory spacecraft, accompany some lightning strikes and last only millionths of a second. Despite their high intensity and their association with visible lightning, few TGFs have been spotted during previous aircraft-based studies.  
      “I went to a meeting just before the ALOFT campaign,” said principal investigator Nikolai Østgaard, a space physicist with the University of Bergen. “And they asked me: ‘How many TGFs are you going to see?’ I said: ‘Either we’ll see zero, or we’ll see a lot.’ And then we happened to see 130.” 
      However, the flickering gamma-ray flashes were a complete surprise.
      “They’re almost impossible to detect from space,” said co-principal investigator Martino Marisaldi, who is also a University of Bergen space physicist. “But when you are flying at 20 kilometers [12.5 miles] high, you’re so close that you will see them.” The research team found more than 25 of these new flashes, each lasting between 50 to 200 milliseconds. 
      The abundance of fast bursts and the discovery of intermediate-duration flashes could be among the most important thundercloud discoveries in a decade or more, said University of New Hampshire physicist Joseph Dwyer, who was not involved in the research. “They’re telling us something about how thunderstorms work, which is really important because thunderstorms produce lightning that hurts and kills a lot of people.” 
      More broadly, Dwyer said he is excited about the prospects of advancing the field of meteorology. “I think everyone assumes that we figured out lightning a long time ago, but it’s an overlooked area … we don’t understand what’s going on inside those clouds right over our heads.” The discovery of flickering gamma-ray flashes may provide crucial clues scientists need to understand thundercloud dynamics, he said.
      Turning to aircraft-based instrumentation rather than satellites ensured a lot of bang for research bucks, said the study’s project scientist, Timothy Lang of NASA’s Marshall Space Flight Center in Huntsville, Alabama. 
      “If we had gotten one flash, we would have been ecstatic — and we got well over 100,” he said. This research could lead to a significant advance in our understanding of thunderstorms and radiation from thunderstorms. “It shows that if you have the right problem and you’re willing to take a little bit of risk, you can have a huge payoff.”
      By James Riordon
      NASA’s Earth Science News Team
      Share
      Details
      Last Updated Oct 02, 2024 EditorJenny MarderContactJames RiordonLocationMarshall Space Flight Center Related Terms
      Earth Gamma Rays Goddard Space Flight Center View the full article
    • By Space Force
      The conference featured keynote speakers, panels of enlisted leaders, and fireside chats, bringing together Hispanic community leaders and advocates to discuss the challenges and opportunities Hispanic service members and civilians face in the Air Force and Space Force.

      View the full article
    • By NASA
      As systems integration team lead for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Hector Chavez helps build a future where NASA and private industry work together to push the boundaries of space exploration.
      With the rise of commercial providers in the space sector, Chavez’s team works to ensure that these companies can develop end-to-end systems to support NASA’s low Earth orbit operations—from transporting crew and cargo to operating mission centers. His team’s role is to assess how commercial providers are using their systems engineering processes to achieve program goals and objectives.
      Official portrait of Hector Chavez. NASA/David DeHoyos With a background that spans both the National Nuclear Security Administration and NASA, Chavez brings knowledge and insight into working with interdisciplinary teams to create complex, reliable systems. He has collaborated across organizations, contracts, and government to ensure design and operational improvements were carried out safely and reliably.
      “Systems integration brings different systems together to deliver capabilities that can’t be achieved alone,” said Chavez.
      His previous role in NASA’s Safety and Mission Assurance office deepened his expertise in mitigating technical risks in human spaceflight by integrating engineering, health, and safety considerations into the development of space exploration vehicles.
      Hector Chavez and the team prepare to lift and install a receiver telescope assembly for the Optical Development System, used to test the alignment and performance of the optical systems for NASA’s Ice, Cloud, and land Elevation Satellite-2 mission, in a clean room at Goddard Space Flight Center in Greenbelt, Maryland.NASA Now with CLDP, Chavez helps these companies navigate NASA’s design processes without stifling innovation. “Our challenge is to communicate what we’ve identified during technical reviews without prohibiting commercial partners from developing innovative solutions,” he said.

      One recent success was the team’s development of two technical standards for docking systems and payload interfaces that will help ensure these systems’ compatibility with existing technologies. This work is essential in allowing commercial low Earth orbit systems to seamlessly integrate with NASA’s heritage designs, a key step toward realizing the agency’s vision for sustained commercial operations in space.

      When asked about the biggest opportunities and challenges in his role, Chavez emphasizes the importance of early collaboration. By engaging with commercial partners at the early stages of the system development life cycle, NASA can provide feedback that shapes the future of commercial low Earth orbit architecture.

      “We identify technical issues and lessons learned without dictating design solutions, allowing for innovation while ensuring safety and reliability,” explained Chavez.
      Hector Chavez receives an award from the U.S. Department of Energy. Chavez’s approach to leadership and teamwork is rooted in his values of perseverance, integrity, and encouragement. These principles have helped guide the development of CLDP’s mission and vision statements, creating an environment that promotes collaboration and creativity. 

      He is passionate about building a team culture where people feel empowered to take responsible risks and explore solutions.
      Hector Chavez receives a Silver Snoopy Award with his family at NASA’s Johnson Space Center in Houston. NASA As NASA prepares for Artemis missions and the next generation of space explorers, Chavez offers advice to the Artemis Generation: “Never do it alone. Build a community and find common ground to share a vision.”
      View the full article
  • Check out these Videos

×
×
  • Create New...