Members Can Post Anonymously On This Site
Space Summit 2023 Press Conference
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
“This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
“One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
“With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond.
For more information about the Deep Space Network, visit:
https://www.nasa.gov/communicating-with-missions/dsn
News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-179
Share
Details
Last Updated Dec 20, 2024 Related Terms
Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Deputy Administrator Pam Melroy speaks at the Microgravity Science Summit at the Eisenhower Executive Office Building, Monday, Dec. 13, 2024, in Washington.Credit: NASA/Aubrey Gemignani NASA leadership participated in the White House Office of Science and Technology Policy’s Microgravity Science Summit (OSTP) on Dec.16 focused on sharing information with leaders across the U.S. federal government about the benefits of microgravity research. During the summit, NASA Deputy Administrator Pam Melroy, OSTP leadership, and others highlighted the importance of the government coming together to understand the transformative power of microgravity and lay the foundation for the next generation of research and innovation.
“The value of microgravity research has never been clearer. This unique environment offers us the chance to explore fundamental questions and test cutting-edge ideas in ways that simply are not possible under the constraints of Earth’s gravity,” said Melroy. “NASA has long been at the forefront of microgravity research, working in collaboration with a growing network of government partners, international space agencies, commercial partners, and academic institutions. Together, we have established a strong foundation for microgravity science aboard the International Space Station, but our work is far from finished. In fact, it’s only just beginning.”
The theme of the summit, “Building a Coalition for the Next Generation of Microgravity Research,” covered work currently being completed on the International Space Station to bring benefit back to Earth, open space to more people, and allow humans to travel farther into space for exploration. Leaders also heard about NASA’s plan to continue the work into the future on commercial space stations and build on the government’s efforts to maintain a national research capability in orbit.
In 2023, the Biden-Harris Administration released a National Low Earth Orbit Research and Development Strategy to provide an interagency strategy and action plan to enable U.S. government-wide collaboration and support of public-private partnerships to ensure continuity of access and sustainable low Earth orbit research and development activities. The strategy supports the United States Space Priorities Framework with a focus on scientific and technological innovation, economic growth, commercial development, and space-related STEM education and workforce development. The summit also included discussion on the great strides and potential for the future in cancer research, semiconductors, wildland fire management, and in space production applications.
“The key to success will be collaboration,” said Melroy. “What we are doing is building a vision for the future—one where microgravity is not a niche area of study, but an essential part of the scientific toolkit for tackling our biggest challenges, helping to improve our national capabilities and posture. A future where space isn’t just a far-off and mysterious destination—it’s an environment for collaboration, discovery, and progress.”
On Dec. 16, NASA also released its Low Earth Orbit Microgravity strategy outlining the agency’s long-term approach to advance microgravity science, technology, and exploration.
Keep Exploring Discover Related Topics
NASA’s Low Earth Orbit Microgravity Strategy
Low Earth Orbit Economy
Commercial Space
Space Station Research and Technology
View the full article
-
By Space Force
Space component field command leadership came together to discuss successes and challenges and provide insights into their missions during a panel at the Spacepower Conference.
View the full article
-
By Space Force
Space component field command leadership came together to discuss successes and challenges and provide insights into their missions during a panel at the 2024 Spacepower Conference.
View the full article
-
By Space Force
Space Force senior leaders outlined a comprehensive vision for the organization's future, marking significant milestones as the service approaches its fifth anniversary.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.