Jump to content

Workshop to Highlight NASA’s Support for Mobility, In-Space Servicing


NASA

Recommended Posts

  • Publishers
September's full Moon, the Harvest Moon, is photographed from the International Space Station, perfectly placed in between exterior station hardware.
September’s full Moon, the Harvest Moon, is photographed from the International Space Station, perfectly placed in between exterior station hardware.

NASA leadership, including Deputy Administrator Pam Melroy, will participate in a workshop on space mobility and in-space servicing on Tuesday, Nov. 7, at the University of Maryland in College Park.

Beginning at 8:30 a.m. EST, the Consortium for Space Mobility and ISAM Capabilities (COSMIC) workshop runs through Wednesday, Nov. 8. NASA announced the consortium in April, aiming to create a nationwide aerospace community alliance that provides global leadership in space mobility and in-space servicing, assembly, and manufacturing (ISAM) for use in Earth orbit, lunar orbit, deep space, and on planetary surfaces.

Following welcome remarks from Prasun Desai, acting associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington, Melroy will provide a keynote on NASA’s support for ISAM.

Other leaders from The White House Office of Science and Technology Policy, the U.S. Department of Defense, the defense and aerospace industry, and academia, also will participate. The conference features panel discussions and breakout workshops for COSMIC’s three caucuses ­– U.S. government, industry, and academia ­– and the Consortium’s five focus areas.

Media interested in attending the opening day, either in person or virtually, should RSVP by 12 p.m. on Monday, Nov. 6, to Parker Wishik at 708-391-7806 or parker.wishik@aero.org. NASA and COSMIC experts will be available for interview opportunities upon request. Other COSMIC plenary sessions will be recorded and later published to the COSMIC YouTube channel.

NASA funds COSMIC, creating a nationwide alliance around the capability areas, and it will support the ISAM National Strategy and National ISAM Implementation Plan, released in 2022, which define a national approach to build on existing investments and emerging capabilities to realize future opportunities enabled by ISAM. The Consortium aims to accelerate ISAM’s universal adoption and support its utilization as a routine part of space architectures and mission lifecycles.  

The Aerospace Corporation leads COSMIC as the management entity contracted by NASA’s Space Technology Mission Directorate to ensure coordination among members, caucuses, and focus areas and to execute COSMIC initiative-focused events.  

For information on the COSMIC kickoff meeting, including the full agenda, visit:

https://cosmicspace.org/2023/08/cosmics-kickoff-meeting

-end-

Jimi Russell
Headquarters, Washington
216-704-2412
james.j.russell@nasa.gov

Parker Wishik
COSMIC
708-391-7806
parker.wishik@aero.org

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This September 2024 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range.Courtesy Patrick J. Hendrickson; used with permission NASA’s Wallops Flight Facility in Virginia is scheduled to support the launch of a suborbital sounding rocket for the U.S. Department of Defense during a launch window that runs 5 p.m. to 11 p.m. EDT each day from Wednesday, Oct. 23 to Friday, Oct. 25.
      No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The Wallops Visitor Center will be closed to the public.
      The rocket launch is expected to be visible from the Chesapeake Bay region.
      Share
      Details
      Last Updated Oct 22, 2024 LocationWallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 1 year ago 2 min read NASA Wallops Supports Second Rocket Lab Electron Launch
      NASA’s Wallops Flight Facility supported the successful launch of a Rocket Lab Electron rocket at…
      Article 2 years ago 5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
      UPDATE: The three rockets comprising the APEP mission launched on Monday, April 8, 2024, at 2:40pm,…
      Article 7 months ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130 Hercules is prepared for departure from NASA’s Wallops Flight Facility in Virginia, on October 15, 2024, for a cargo transport mission to India. The C-130 is supporting the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.NASA/Madison Griffin NASA’s globetrotting C-130 Hercules team is carrying out a cargo transport mission to Bengaluru, India, in support of the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.
      The C-130 departed from NASA’s Wallops Flight Facility in Virginia, Tuesday, Oct. 15, to embark on the multi-leg, multi-day journey. The flight path will take the aircraft coast to coast within the United States, across the Pacific Ocean with planned island stops, and finally to its destination in India. The goal: safely deliver NISAR’s radar antennae reflector, one of NASA’s contributions to the mission, for integration on the spacecraft. NISAR is a joint mission between NASA and ISRO (Indian Space Research Organisation).
      The cargo transport mission will encompass approximately 24,500 nautical miles and nearly 80 hours of flight time for the C-130 and crew. The flight plan includes strategic stops and rest days to service the aircraft and reduce crew fatigue from long-haul segments of the flight and multiple time zone changes.
      The flight crew inspects the aircraft prior to departure from NASA Wallops.NASA/Madison Griffin The C-130’s cargo compartment has plenty of space to hold the more than 2,800-pound payload containing the radar antennae reflector once retrieved from California.NASA/Madison Griffin The first stop for the C-130 was March Air Reserve Base located in Riverside County, California, to retrieve the radar antennae reflector from NASA’s Jet Propulsion Laboratory in Southern California. Additional stops during the mission include Hickman Air Force Base, Hawaii; Andersen Air Force Base, Guam; Clark Air Base, Philippines; and Hindustan Aeronautics Limited Airport in Bengaluru, India.
      This is the C-130 and crew’s third cargo transport to India in support of the NISAR mission, with prior flights in July 2023 and March 2024.
      For more information, visit nasa.gov/wallops.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Oct 17, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Aeronautics NASA Aircraft Wallops Flight Facility View the full article
    • By European Space Agency
      ESA has taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE. A €119 million contract was signed with D-Orbit as the co-funding prime contractor.
      View the full article
    • By NASA
      4 Min Read Lunar Autonomy Mobility Pathfinder Workshop: A NASA Chief Technologist Sponsored Workshop
      OVERVIEW
      The NASA chief technologist’s team, within the Office of Technology, Policy, and Strategy (OTPS), is hosting a Lunar Autonomy Mobility Pathfinder (LAMP) workshop on Tuesday, November 12, 2024, to provide a community forum to discuss modeling and simulation testbeds in this domain. The workshop is in coordination with NASA’s Space Technology Mission Directorate. 
      With the Artemis campaign, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Technologies like trusted autonomy are necessary to support these types of sustained operations. Trusted autonomy is a more robust level of autonomy designed for long-term operational use. 
      The LAMP workshop will be held on Tuesday, November 12, 2024, from 10 a.m. to 5 p.m. PST at the University of Nevada Las Vegas (UNLV) Black Fire Innovation Facility in Las Vegas, Nevada. The Black Fire Innovation Center Building is located at 8400 W. Sunset Blvd. Las Vegas, NV 89113, approximately 20 minutes from the UNLV main campus. 
      This workshop has been designed to coincide with the 2024 Lunar Surface Innovation Consortium fall meeting (also taking place in Las Vegas, Nevada).  
      The OTPS solver-in-residence is the main organizer and facilitator for this workshop.
      PROGRAM 
      The LAMP workshop will provide a forum for a discussion on topics that include: 
      A modeling and simulation (M&S) pathfinder to explore an integrated sim environment for lunar stakeholders from commercial industry, other U.S. government agencies, international partners and academia, to simulate their systems that would eventually operate in the lunar environment and to test interoperability between systems.      How to leverage the planned rover missions to 1) calibrate and improve this M&S environment over time, and 2) potentially use them as autonomy testbeds to safely mature algorithms in a relevant environment.  Please RSVP for in-person or virtual attendance by registering at the following site:
       https://nasaevents.webex.com/weblink/register/rdf4dd38bc3bf176dc32d147513f7b77c
      *Please note registration is on an individual basis. If attending with multiple guests, each guest must register for the event separately. 

      LAMP Workshop Agenda
      (All times listed are in PST and subject to change)
      10:00 a.m. – 12:00p.m.Modeling and Simulation (M&S) showcase (In-person only & optional)
      This is an opportunity for interested participants to show their lunar simulation capabilities inside of UNLV’s Blackfire Innovation esports arena. Space is limited. Please indicate if you are interested in participating when you register, and we will reach out with additional information. 1:00 –2:00p.m.Challenges to Developing Trusted Autonomy 
      NASA will discuss the challenges of maturing autonomy that can be trusted to operate over long periods of time and how we can work together to overcome those challenges.2:00 –3:00p.m.Pre-Formulation Discussion of a Lunar Autonomy Mobility Pathfinder Modeling and Simulation Environment
      Subject matter experts (SMEs) from NASA will layout thoughts on what a digital transformation pathfinder would look like that benefits lunar autonomy efforts across the globe. 3:00 – 3:15p.m.Break3:15 – 4:15p.m.Lunar Testbeds Discussion
      This will be a discussion focused on how assets on the moon could be used as testbeds to generate truth data for Earth-based simulations and to validate that autonomy can be trusted in the lunar environment.4:15 – 5:00p.m.Polling and Discussions
      Audience feedback will be solicited on various topics. This will include a pre-formulated series of questions and real time polls. CONTACT 
      For questions, please email:

      Dr. Adam Yingling
      2024 OTPS Solver-in-Residence
      Office of Technology, Policy, and Strategy (OTPS) 
      NASA Headquarters 
      Email: adam.j.yingling@nasa.gov
      The Solver-in-Residence (SiR) program is a one-year detail position with the chief technologist in NASA’s Office of Technology Policy and Strategy. The program enables a NASA civil servant to propose a one-year investigation on a specific technology challenge and then work to identify solutions to address those challenges.
      Share
      Details
      Last Updated Oct 10, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) Space Technology Mission Directorate View the full article
    • By NASA
      Illustration of logistics elements on the lunar surface. NASA NASA is asking U.S. industry to submit innovative architecture solutions that could help the agency land and move cargo on the lunar surfaced during future Artemis missions. Released in September, the agency’s request for proposal also supports NASA’s broader Moon to Mars Objectives.
      Previously, NASA published two white papers outlining lunar logistics and mobility gaps as part of its Moon to Mars architecture development effort that augmented an earlier white paper on logistics considerations. The current ask, Lunar Logistics and Mobility Studies, expects proposing companies to consider these publications, which describe NASA’s future needs for logistics and mobility.
      “NASA relies on collaborations from diverse partners to develop its exploration architecture,” said Nujoud Merancy, deputy associate administrator, strategy and architecture in the Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “Studies like this allow the agency to leverage the incredible expertise in the commercial aerospace community.”
      Lunar Logistics Drivers, Needs
      Logistics items, including food, water, air, and spare parts, comprise a relatively large portion of the cargo NASA expects to need to move around on the Moon, including at the lunar South Pole where the agency plans to send crew in the future.
      The Lunar Logistics Drivers and Needs white paper outlines the importance of accurately predicting logistics resupply needs, as they can heavily influence the overall architecture and design of exploration missions.
      As the agency progresses into more complex lunar missions, NASA will require more and more lunar logistics as the agency increases mission frequency and duration. This current proposal seeks industry studies that could help inform NASA’s approach to this growing need.
      Lunar Mobility Drivers, Needs
      The white paper discusses the transportation of landed cargo and exploration assets from where they are delivered to where they are used, such as to locations with ideal lighting, away from ascent vehicle landing sites, or near other assets. These distances can range from yards to miles away from landing locations, and the ability to move around landing sites easily and quickly are key to exploring the lunar surface efficiently.
      NASA’s current planned lunar mobility elements, such as the Lunar Terrain Vehicle and Pressurized Rover, have a capability limit of about 1,760 pounds (800 kilograms) and will primarily be used to transport astronauts around the lunar surface. However, future missions could include a need to move cargo totaling around 4,400 to 13,000 pounds (2,000 to 6,000 kg). To meet this demand, NASA must develop new mobility capabilities with its partners.
      Lunar Surface Cargo
      The Lunar Surface Cargo white paper characterizes lunar surface cargo delivery needs, compares those needs with current cargo lander capabilities, and outlines considerations for fulfilling this capability gap. While cargo delivery capabilities currently included in the Moon to Mars architecture — like CLPS (Commercial Lunar Payload Services) and human-class delivery landers — can meet near-term needs, there are substantial gaps for future needs.
      Access to a diverse fleet of cargo landers would empower a larger lunar exploration footprint. A combination of international partnerships and U.S. industry-provided landers could supply the concepts and capabilities to meet this need. The request for proposals doesn’t explicitly seek new lander concepts but does ask for integrated assessments of logistics that can include transportation elements.
      “We’re looking for industry to offer creative insights that can inform our logistics and mobility strategy,” said Brooke Thornton, industry engagement lead for NASA’s Strategy and Architecture Office. “Ultimately, we’re hoping to grow our awareness of the unique capabilities that are or could become a part of the commercial lunar marketplace.”
      This is the latest appendix to NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP-2). Solicitations under NextSTEP seek commercial development of capabilities that empower crewed exploration in deep space. NASA published the latest NextSTEP omnibus, NextSTEP-3, on Sept. 27.
      Request for Proposals
      https://sam.gov/opp/2291c465203240388302bb1f126c3db9/view
      View the full article
  • Check out these Videos

×
×
  • Create New...