Members Can Post Anonymously On This Site
Details from Webb’s Cameras Reveal Crabby Composition
-
Similar Topics
-
By NASA
The next CSUG event will take place November 6 – 7 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Throughout the CSUG, representatives from NASA’s Space Communications and Navigation program and CSP’s industry partners will share updates on commercial SATCOM capability developments and the commercial service demonstrations taking place under CSP.
NASA attendees must be badged and have physical access to Goddard Space Flight Center to attend in-person. There will be limited in-person seating, so RSVPs are required. Meeting invitations and an agenda will be provided to CSP’s active CSUG roster as details are finalized.
Please contact mission support lead engineer Aaron Smith, aaron.smith@nasa.gov, or CSUG team member Michele Vlach, michele.m.vlach@nasa.gov , for inquires and requests to be added to the CSUG distribution list.
Funded Space Act Agreement Partners
In 2022, CSP awarded six funded Space Act Agreements to members of industry to develop and demonstrate space-based relay services that can meet NASA mission needs.
Inmarsat Government Inc.
Download
Inmarsat Government will demonstrate a variety of space-based applications enabled by their established ELERA worldwide L-band network and ELERA satellites.
Kuiper Government Solutions LLC
Download
Kuiper will deploy over 3,000 satellites in low-Earth orbit that link to small customer terminals on one end and a global network of hundreds of ground gateways on the other.
SES Government Solutions
Download
SES will develop a real-time, high-availability connectivity solution enabled by their established geostationary and medium-Earth orbit satellite constellations.
Space Exploration Technologies
Download
SpaceX plans to connect their established Starlink constellation and extensive ground system to user spacecraft through optical intersatellite links for customers in low-Earth orbit.
Telesat U.S. Services LLC
Download
Telesat plans to leverage their Telesat Lightspeed network with optical intersatellite link technology to provide seamless end-to-end connectivity for low-Earth orbit missions.
Viasat Incorporated
Download
Viasat’s Real-Time Space Relay service, enabled by the anticipated ViaSat-3 network, is designed to offer a persistent on-demand capability for low-Earth orbit operators.
Non-Reimbursable Space Act Agreement Partners
CSP is also formulating non-reimbursable Space Act Agreements with members of industry to grow the domestic SATCOM market, potentially expanding future space-relay offerings for NASA missions.
Kepler Communications US Inc.
Kepler Communications US Inc. plans to deliver data at lightspeed with a Space Development Agency-compatible optical data relay network, connecting space and Earth communications with low latency, high throughput, and enhanced security. The Kepler Network plans to provide complete coverage of all low-Earth orbit above 400 km altitude.
Explore More
5 min read October Transformer of the Month: Nipa Phojanamongkolkij
Article 2 days ago 2 min read NASA Ames Stars of the Month: October 2024
Article 2 days ago 4 min read NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
Article 2 days ago View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft show a trough on Dinkinesh where a large piece — about a quarter of the asteroid — suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.
Panels a, b, and c each show stereographic image pairs of the asteroid Dinkinesh taken by the NASA Lucy Spacecraft’s L’LORRI Instrument in the minutes around closest approach on Nov. 1, 2023. The yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab “We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” said Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is lead author of a paper on these observations published May 29 in Nature.
On November 1, 2023, NASA’s Lucy spacecraft flew by the main-belt asteroid Dinkinesh. Now, the mission has released pictures from Lucy’s Long Range Reconnaissance Imager taken over a roughly three-hour period, providing the best views of the asteroid to date. During the flyby, Lucy discovered that Dinkinesh has a small moon, which the mission named “Selam,” a greeting in the Amharic language meaning “peace.” Lucy is the first mission designed to visit the Jupiter Trojans, two swarms of asteroids trapped in Jupiter’s orbit that may be “fossils” from the era of planet formation. Credit: NASA’s Goddard Space Flight Center. Download this video and more at: https://svs.gsfc.nasa.gov/14596/ Researchers think that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years rotating in the sunlight, the tiny forces coming from the thermal radiation emitted from the asteroid’s warm surface generated a small torque that caused Dinkinesh to gradually rotate faster, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely caused debris to enter into a close orbit, which became the raw material that produced the ridge and satellite.
Stereo movie of asteroid Dinkinesh from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it was able to hold together longer, more like a rock, with more strength than a fluid, eventually giving way under stress and fragmenting into large pieces. (Although the amount of strength needed to fragment a small asteroid like Dinkinesh is miniscule compared to most rocks on Earth.)
“The trough suggests an abrupt failure, more an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, project scientist for Lucy and a co-author of the paper.
“These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” said Levison. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.”
The researchers think some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious.
Stereo movie of Selam from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. That close flyby will propel the spacecraft back through the main asteroid belt, where it will observe asteroid Donaldjohanson in 2025, and then on to the first of the encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun beginning in 2027.
Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the Science Mission Directorate at NASA Headquarters in Washington.
For more information about NASA’s Lucy mission, visit:
https://science.nasa.gov/mission/lucy
Share
Details
Last Updated May 29, 2024 EditorWilliam SteigerwaldContactWilliam Steigerwaldwilliam.a.steigerwald@nasa.govLocationGoddard Space Flight Center Related Terms
Asteroids General The Solar System Explore More
1 min read What are the Trojan Asteroids? We Asked a NASA Scientist
What are the Trojan asteroids? These mysterious space rocks have been gravitationally trapped in Jupiter’s…
Article 2 years ago 3 min read Asteroid Fast Facts
Article 10 years ago 13 min read NASA’s Lucy Mission: A Journey to the Young Solar System
NASA’s Lucy spacecraft launched Oct. 16, 2021, on a 12-year journey to Jupiter’s Trojan asteroids.
Article 3 years ago View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Say cheese, Moon. We’re coming in for a close-up.
As Intuitive Machines’ Nova-C lander descends toward the Moon, four tiny NASA cameras will be trained on the lunar surface, collecting imagery of how the surface changes from interactions with the spacecraft’s engine plume.
The Stereo Cameras for Lunar Plume-Surface Studies will help us to land larger payloads as we explore space. Olivia Tyrrell from the SCALPPS photogrammetry team explains how a small array of cameras will capture invaluable imagery during lunar descent and landing, and how that imagery can inform our future missions to the Moon and beyond. Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Nova-C — SCALPSS 1.0 — to produce a 3D view of the surface.
These images of the Moon’s surface won’t just be a “gee-whiz” novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure plume-surface interaction on the Moon in real time and help to answer these questions.
“If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters. “It’s all part of an integrated engineering problem.”
Under Artemis, NASA intends to collaborate with commercial and international partners to establish the first long-term presence on the Moon. On this Commercial Lunar Payload Services (CLPS) initiative delivery, SCALPSS 1.0 is purely focused on how the lander alters the surface of the Moon during landing. It will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected depression they reveal probably won’t be very deep — not this time, anyway.
“Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances into a future where Human-Landing-Systems-class spacecraft will start making trips to the Moon.
“Those are going to be much larger than even Apollo. Those are pretty large engines, and they could conceivably dig some good holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
SCALPSS 1.1, which will feature two additional cameras, is scheduled to fly on another CLPS delivery — Firefly Aerospace’s Blue Ghost — later this year. The extra cameras are optimized to take images at a higher altitude, prior to the expected onset of plume-surface interaction, and provide a more accurate before-and-after comparison.
SCALPSS 1.0 was funded by NASA’s Science Mission Directorate through the NASA-Provided Lunar Payloads Program. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
NASA is working with several American companies to deliver science and technology to the lunar surface through the CLPS initiative.
These companies, ranging in size, bid on delivering payloads for NASA. This includes everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.
Joe Atkinson
NASA Langley Research Center
Explore More
5 min read NASA to Study Effects of Radio Noise on Lunar Science
Article 1 day ago 1 min read Intuitive Machines IM-1 Mission
Article 2 days ago 4 min read NASA Autonomous Flight Software Successfully Used in Air Taxi Stand-Ins
Article 1 week ago Share
Details
Last Updated Feb 02, 2024 Related Terms
Commercial Lunar Payload Services (CLPS) Langley Research Center View the full article
-
By European Space Agency
A groundbreaking study that combines satellite data and Artificial Intelligence has thrown new light on the number of vessels at sea. Astonishingly, the study reveals that around 75% of the world's industrial fishing vessels have previously been ‘dark’ to public tracking systems.
View the full article
-
By NASA
NASA’s X-59 quiet supersonic research aircraft sits on the apron outside Lockheed Martin’s Skunk Works facility at dawn in Palmdale, California. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to address one of the primary challenges to supersonic flight over land by making sonic booms quieter.Lockheed Martin Skunk Works NASA and Lockheed Martin formally debuted the agency’s X-59 quiet supersonic aircraft Friday. Using this one-of-a-kind experimental airplane, NASA aims to gather data that could revolutionize air travel, paving the way for a new generation of commercial aircraft that can travel faster than the speed of sound.
“This is a major accomplishment made possible only through the hard work and ingenuity from NASA and the entire X-59 team,” said NASA Deputy Administrator Pam Melroy. “In just a few short years we’ve gone from an ambitious concept to reality. NASA’s X-59 will help change the way we travel, bringing us closer together in much less time.”
Melroy and other senior officials revealed the aircraft during a ceremony hosted by prime contractor Lockheed Martin Skunk Works at its Palmdale, California facility.
The X-59 is at the center of NASA’s Quesst mission, which focuses on providing data to help regulators reconsider rules that prohibit commercial supersonic flight over land. For 50 years, the U.S. and other nations have prohibited such flights because of the disturbance caused by loud, startling sonic booms on the communities below. The X-59 is expected to fly at 1.4 times the speed of sound, or 925 mph. Its design, shaping and technologies will allow the aircraft to achieve these speeds while generating a quieter sonic thump.
“It’s thrilling to consider the level of ambition behind Quesst and its potential benefits,” said Bob Pearce, associate administrator for aeronautics research at NASA Headquarters in Washington. “NASA will share the data and technology we generate from this one-of-a-kind mission with regulators and with industry. By demonstrating the possibility of quiet commercial supersonic travel over land, we seek to open new commercial markets for U.S. companies and benefit travelers around the world.”
With rollout complete, the Quesst team will shift to its next steps in preparation for first flight: integrated systems testing, engine runs, and taxi testing for the X-59.
The aircraft is set to take off for the first time later this year, followed by its first quiet supersonic flight. The Quesst team will conduct several of the aircraft’s flight tests at Skunk Works before transferring it to NASA’s Armstrong Flight Research Center in Edwards, California, which will serve as its base of operations.
“Across both teams, talented, dedicated, and passionate scientists, engineers, and production artisans have collaborated to develop and produce this aircraft,” said John Clark, vice president and general manager at Lockheed Martin Skunk Works. “We’re honored to be a part of this journey to shape the future of supersonic travel over land alongside NASA and our suppliers.”
Once NASA completes flight tests, the agency will fly the aircraft over several to-be-selected cities across the U.S., collecting input about the sound the X-59 generates and how people perceive it. NASA will provide that data to the Federal Aviation Administration and international regulators.
The X-59 is a unique experimental airplane, not a prototype – its technologies are meant to inform future generations of quiet supersonic aircraft.
At 99.7 feet long and 29.5 feet wide, the aircraft’s shape and the technological advancements it houses will make quiet supersonic flight possible. The X-59’s thin, tapered nose accounts for almost a third of its length and will break up the shock waves that would ordinarily result in a supersonic aircraft causing a sonic boom.
Due to this configuration, the cockpit is located almost halfway down the length of the aircraft – and does not have a forward-facing window. Instead, the Quesst team developed the eXternal Vision System, a series of high-resolution cameras feeding a 4K monitor in the cockpit.
The Quesst team also designed the aircraft with its engine mounted on top and gave it a smooth underside to help keep shockwaves from merging behind the aircraft and causing a sonic boom.
For more information about Quesst, visit:
www.nasa.gov/Quesst
-end-
Rob Margetta
Headquarters, Washington
202-763-5012
robert.j.margetta@nasa.gov
Sasha Ellis
Langley Research Center, Hampton, Virginia
757-864-5473
sasha.c.ellis@nasa.gov
Share
Details
Last Updated Jan 12, 2024 LocationNASA Headquarters Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator NASA Aircraft Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.