Jump to content

The Marshall Star for November 1, 2023


NASA

Recommended Posts

  • Publishers
19 Min Read

The Marshall Star for November 1, 2023

Two of NASA’s X-ray space telescopes have combined their imaging powers to unveil the magnetic field “bones” of a remarkable hand-shaped structure in space.

NASA, AAS Talk Present, Future of Space Exploration During 3-Day Symposium

By Jessica Barnett

Hundreds of students, scientists, and other stakeholders recently gathered for a three-day symposium featuring some of the leading minds in space exploration and packed with updates and discussions about an array of space topics.

ceb-2087.jpg?w=2048
Hundreds of students, scientists, and other stakeholders listen in person and online as NASA leaders discuss the Artemis missions during the 2023 von Braun Space Exploration Symposium held Oct. 25–27 at the University of Alabama in Huntsville.
NASA/Charles Beason

The 2023 von Braun Space Exploration Symposium was held Oct. 25–27 at the University of Alabama in Huntsville and featured 10 panel discussions with additional keynote and luncheon speakers, networking opportunities, and award presentations. This year’s theme was “Advancing Space: From LEO to Lunar and Beyond.”

NASA’s Marshall Space Flight Center partnered with the American Astronautical Society to organize the event, along with the National Space Club of Huntsville and UAH. Marshall Acting Center Director Joseph Pelfrey, who helped kick off the symposium and moderated one of its panels, called it a true success.

“I want to thank everyone from Marshall, AAS, UAH, and the NSC for all their hard work planning the event,” Pelfrey said. “I enjoyed networking with our private, academic and government partners.”

ceb-2514.jpg?w=2048
Jason Turpin, senior technical leader of propulsion at Marshall, far right, discusses advances in propulsion during the 2023 von Braun Space Exploration Symposium. Joining him onstage, from left, are Eric Paulson, who manages the Rotating Detonation Rocket Engine program at the Air Force Research Laboratory, and Tabitha Dodson, who manages the DRACO (Demonstration Rocket for Agile Cislunar Operations) program for DARPA (Defense Advanced Research Projects Agency).
NASA/Charles Beason

Attendees could listen to the symposium live in person at UAH’s Charger Union Theater or online via Zoom. The event lineup included more than 60 speakers who shared their insights on recent space exploration achievements, future objectives, career opportunities, and more.

“It was especially motivating to see all the engaged students who represent the Artemis Generation,” Pelfrey said. “I feel confident they will continue building on the strong foundation of space exploration we have laid out for them, leading the way for generations to come.”

NASA and AAS will team up for another three-day event early next year. Learn more about the 61st annual Goddard Space Sciences Symposium, currently planned for March 20–22, 2024, in College Park, Maryland.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

Marshall Exhibits Inspire Thousands of Youths at STEAMfest

By Celine Smith

NASA’s Marshall Space Flight Center and the Huntsville Science Festival collaborated to bring thousands to the 3rd Annual STEAMfest (Science, Technology, Engineering, Arts, and Mathematics Festival), an event created to engage students of all ages in the world of science, technology, and art.

The event was hosted in downtown Huntsville at the Von Braun Center’s East Hall on Oct. 28.

steamfest1.jpg?w=2048
NASA Marshall Space Flight Center team members representing Technology Demonstration Missions and SERVIR engage visitors to the NASA booth during the 3rd  Annual Huntsville STEAMfest event Oct. 28 in downtown Huntsville.
NASA/Chris Blair

Marshall played a key role in the event by providing information and exhibits about STEAM in the space industry. Organizations such as Technology Demonstration Missions, SERVIR, the Human Landing System, SLS (Space Launch System), and the Science & Technology Forum participated in the event to inform people about their functions and importance at NASA.

Before anyone entered the East Hall, they encountered an RS-25 engine placed in the parking lot. NASA was the first booth upon entry, housing informational brochures about rockets the Chandra Observatory, the Artemis missions, and more. The NASA booth featured free stickers and interactive booklets for kids teaching how to draw the SLS, as well as inflatables for photo opportunities.

“From the very beginning NASA has been an incredible partner,” said Joe Iacuzzo, founder and director of the Huntsville Science Festival, which is associated with the SFA (Science Festival Alliance). “Without NASA’s participation and incredible generosity this event would be nowhere near what it is today,”

STEAMfest is a national event started by the Massachusetts Institute of Technology’s SFA (Science Festival Alliance) with the goal to provide a free event for children to learn and be inspired to pursue an education and career in the world of science.

“The first STEAMfest in Huntsville took place online in 2020, garnering 4,500 virtual attendees,” Iacuzzo said. “Last year, we had 7,300 people attend, and this year we’re anticipating the same amount if not more.”

To inform and invite the public, STEAMfest interacts with about 35,000 people in Huntsville through schools, companies, and non-profits also striving toward the goal of encouraging young people to pursue STEAM. Their mission is to encourage underserved students who have not thought of pursuing a technological degree and career.

steamfest-2.jpg?w=2048
Nearly 4,000 visitors enjoyed learning about NASA missions during the 3rd annual Huntsville STEAMfest event Oct. 28 in downtown Huntsville.
NASA/Chris Blair

STEAMfest featured three science stage entertainers, who demonstrated exciting science experiments such as using an artificial lightning generating device to pop hydrogen-filled balloons creating fireballs in mid-air. An art installation inspired by science and technology was there for viewing. Two professors from UAH (University of Alabama in Huntsville) performed and discussed the music made with synthesizers they built and Dr. Scott Persons, a dinosaur paleontologist, brought fossils for viewing and learning.

Several secondary schools and institutions of higher learning provided details about their STEAM-based opportunities and programs. Other federal agencies and industry members also shared information about STEAM careers. “If STEAM doesn’t reach the kids, then kids won’t reach for STEAM,” said Gayla Suddarth, who serves as a Huntsville Science Festival member and director for Tennessee Valley’s chapter of Women in Defense.

Smith, a Media Fusion employee, supports Marshall’s Office of Communications.

IXPE Untangles Theories Surrounding Historic Supernova Remnant

By Rick Smith

NASA’s IXPE (Imaging X-ray Polarimetry Explorer) telescope has captured the first polarized X-ray imagery of the supernova remnant SN 1006, expanding scientists’ understanding of the relationship between magnetic fields and the flow of high-energy particles from exploding stars.

“Magnetic fields are extremely difficult to measure, but IXPE provides an efficient way for us to probe them,” said Dr. Ping Zhou, an astrophysicist at Nanjing University in Jiangsu, China, and lead author of a new paper on the findings, published Oct. 27 in The Astrophysical Journal. “Now we can see that SN 1006’s magnetic fields are turbulent, but also present an organized direction.”

A red and orange circle on a black starry background. A portion of the upper left is purple with lines on it.
This new image of supernova remnant SN 1006 combines data from NASA’s Imaging X-ray Polarimetry Explorer and NASA’s Chandra X-ray Observatory. The red, green, and blue elements reflect low, medium, and high energy X-rays, respectively, as detected by Chandra. The IXPE data, which measure the polarization of the X-ray light, is show in purple in the upper left corner, with the addition of lines representing the outward movement of the remnant’s magnetic field.
X-ray: NASA/CXC/SAO (Chandra); NASA/MSFC/Nanjing Univ./P. Zhou et al. (IXPE); IR: NASA/JPL/CalTech/Spitzer; Image Processing: NASA/CXC/SAO/J.Schmidt

Situated some 6,500 light-years from Earth in the Lupus constellation, SN 1006 is all that remains after a titanic explosion, which occurred either when two white dwarfs merged or when a white dwarf pulled too much mass from a companion star. Initially spotted in spring of 1006 CE by observers across China, Japan, Europe, and the Middle East, its light was visible to the naked eye for at least three years. Modern astronomers still consider it the brightest stellar event in recorded history.

Since modern observation began, researchers have identified the remnant’s strange double structure, markedly different from other, rounded supernova remnants. It also has bright “limbs” or edges identifiable in the X-ray and gamma-ray bands.

“Close-proximity, X-ray-bright supernova remnants such as SN 1006 are ideally suited to IXPE measurements, given IXPE’s combination of X-ray polarization sensitivity with the capability to resolve the emission regions spatially,” said Douglas Swartz, a Universities Space Research Association researcher at NASA’s Marshall Space Flight Center. “This integrated capability is essential to localizing cosmic-ray acceleration sites.”

Previous X-ray observations of SN 1006 offered the first evidence that supernova remnants can radically accelerate electrons, and helped identify rapidly expanding nebulae around exploded stars as a birthplace for highly energetic cosmic rays, which can travel at nearly the speed of the light.

Scientists surmised that SN 1006’s unique structure is tied to the orientation of its magnetic field. They theorized that supernova blast waves in its northeast and southwest sectors move in the direction aligned with the magnetic field, and more efficiently accelerate high-energy particles.

IXPE’s new findings helped validate and clarify those theories, said paper coauthor Dr. Yi-Jung Yang, a high-energy astrophysicist at the University of Hong Kong.

“The polarization properties obtained from our spectral-polarimetric analysis align remarkably well with outcomes from other methods and X-ray observatories,” Yang said.

For the first time, we can map the magnetic field structures of supernova remnants at higher energies with enhanced detail and accuracy – enabling us to better understand the processes driving the acceleration of these particles.

Dr. Yi-Jung Yang

Dr. Yi-Jung Yang

High-energy astrophysicist at the University of Hong Kong

Researchers say the results demonstrate a connection between the magnetic fields and the remnant’s high-energy particle outflow. The magnetic fields in SN 1006’s shell are somewhat disorganized, per IXPE’s findings, yet still have a preferred orientation. As the shock wave from the original explosion passes through the surrounding gas, the magnetic fields become aligned with the shock wave’s motion. Charged particles are trapped by the magnetic fields around the original point of the blast, where they quickly receive bursts of acceleration. These speeding high-energy particles, in turn, transfer energy to keep the magnetic fields strong and turbulent.

IXPE has observed three supernova remnants – Cassiopeia A, Tycho, and now SN 1006 – since launching in December 2021. Its findings have helped scientists develop a more comprehensive understanding of the origin and processes of the magnetic fields surrounding these phenomena.

IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center. Spacecraft operations are jointly managed by Ball Aerospace in Broomfield, Colorado, and the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

Smith, a Manufacturing Technical Solutions employee, supports the Marshall Office of Communications.

NASA X-ray Telescopes Reveal the ‘Bones’ of a Ghostly Cosmic Hand

Rotating neutron stars with strong magnetic fields, or pulsars, serve as laboratories for extreme physics, offering high-energy conditions that cannot be replicated on Earth. Young pulsars can create jets of matter and antimatter moving away from the poles of the pulsar, along with an intense wind, forming a “pulsar wind nebula”.

This release features a composite image of a pulsar wind nebula, which strongly resembles a ghostly purple hand with sparkling fingertips. A pulsar is a highly magnetized collapsed star that rotates and creates jets of matter flowing away from its poles. These jets, along with intense winds of particles, form pulsar wind nebulae. Here, the pulsar wind nebula known as MSH 15-52 resembles a hazy purple cloud set against a black, starry backdrop. Both NASA's Chandra X-ray Observatory and the Imaging X-ray Polarimetry Explorer (IXPE) have observed MSH 15-52. Their observations revealed that the shape of this pulsar wind nebula strongly resembles a human hand, including five fingers, a palm and wrist. The bright white spot near the base of the palm is the pulsar itself. The three longest fingertips of the hand-shape point toward our upper right, or 1:00 on a clock face. There, a small, mottled, orange and yellow cloud appears to sparkle or glow like embers. This orange cloud is part of the remains of the supernova explosion that created the pulsar. The backdrop of stars was captured in infrared light.
 In 2001, NASA’s Chandra X-ray Observatory first observed the pulsar PSR B1509-58 and revealed that its pulsar wind nebula (referred to as MSH 15-52) resembles a human hand. Now Chandra’s data of MSH 15-52 have been combined with data from NASA’s newest X-ray telescope, the Imaging X-ray Polarimetry Explorer (IXPE) to unveil the magnetic field “bones” of this remarkable structure.
Credit: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt)

In 2001, NASA’s Chandra X-ray Observatory first observed the pulsar PSR B1509-58 and revealed that its pulsar wind nebula (referred to as MSH 15-52) resembles a human hand. The pulsar is located at the base of the “palm” of the nebula. Now Chandra’s data of MSH 15-52 have been combined with data from NASA’s newest X-ray telescope, IXPE (Imaging X-ray Polarimetry Explorer) to unveil the magnetic field “bones” of this remarkable structure, as reported in this press release. IXPE stared at MSH 15-52 for 17 days, the longest it has looked at any single object since it launched in December 2021.

In a new composite image, Chandra data are seen in orange (low-energy X-rays), green, and blue (higher-energy X-rays), while the diffuse purple represents the IXPE observations. The pulsar is in the bright region at the base of the palm and the fingers are reaching toward low energy X-ray clouds in the surrounding remains of the supernova that formed the pulsar. The image also includes infrared data from the second data release of the Dark Energy Camera Plane Survey (DECaPS2) in red and blue.

This release features a composite image of a pulsar wind nebula, which strongly resembles a ghostly white hand with sparkling fingertips
By combining data from Chandra and IXPE, astronomers are learning more about how a pulsar is injecting particles into space and shaping its environment. The X-ray data are shown along with infrared data from the Dark Energy Camera in Chile. Young pulsars can create jets of matter and antimatter moving away from the poles of the pulsar, along with an intense wind, forming a “pulsar wind nebula”. This one, known as MSH 15-52, has a shape resembling a human hand and provides insight into how these objects are formed.
Credit: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt

The IXPE data provides the first map of the magnetic field in the ‘hand’. It reveals information about the electric field orientation of X-rays determined by the magnetic field of the X-ray source. This is called “X-ray polarization”.

An additional X-ray image shows the magnetic field map in MSH 15-52. In this image, short straight lines represent IXPE polarization measurements, mapping the direction of the local magnetic field. Orange “bars” mark the most precise measurements, followed by cyan and blue bars with less precise measurements. The complex field lines follow the `wrist’, ‘palm’ and ‘fingers’ of the hand, and probably help define the extended finger-like structures.

The amount of polarization — indicated by bar length — is remarkably high, reaching the maximum level expected from theoretical work. To achieve that strength, the magnetic field must be very straight and uniform, meaning there is little turbulence in those regions of the pulsar wind nebula. 

One particularly interesting feature of MSH 15-52 is a bright X-ray jet directed from the pulsar to the “wrist” at the bottom of the image. The new IXPE data reveal that the polarization at the start of the jet is low, likely because this is a turbulent region with complex, tangled magnetic fields associated with the generation of high-energy particles. By the end of the jet the magnetic field lines appear to straighten and become much more uniform, causing the polarization to become much larger.

A paper describing these results by Roger Romani of Stanford University and collaborators was published in The Astrophysical Journal on Oct. 23 and is available at https://arxiv.org/abs/2309.16067 IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

Marshall manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

How NASA Is Protecting Europa Clipper from Space Radiation

When NASA’s Europa Clipper begins orbiting Jupiter to investigate whether its ice-encased moon, Europa, has conditions suitable for life, the spacecraft will pass repeatedly through one of the most punishing radiation environments in our solar system.

Hardening the spacecraft against potential damage from that radiation is no easy task. But on Oct. 7, the mission put the final piece of the spacecraft’s “armor” in place when it sealed the vault, a container specially designed to shield Europa Clipper’s sophisticated electronics. The probe is being put together, piece by piece, in the Spacecraft Assembly Facility at NASA’s Jet Propulsion Laboratory ahead of its launch in October 2024.

This illustration depicts NASA’s Europa Clipper as it flies by Jupiter’s moon Europa. The mission is targeting an October 2024 launch.
This illustration depicts NASA’s Europa Clipper as it flies by Jupiter’s moon Europa. The mission is targeting an October 2024 launch.
NASA/JPL-Caltech

“Closing the vault is a major milestone,” said Kendra Short, Europa Clipper’s deputy flight system manager at JPL. “It means we’ve got everything in there that we have to have in there. We’re ready to button it up.”

Just under a half-inch thick, the aluminum vault houses the electronics for the spacecraft’s suite of science instruments. The alternative of shielding each set of electronic parts individually would add cost and weight to the spacecraft.

“The vault is designed to reduce the radiation environment to acceptable levels for most of the electronics,” said JPL’s Insoo Jun, the co-chair of the Europa Clipper Radiation Focus Group and an expert on space radiation.

Jupiter’s gigantic magnetic field is 20,000 times as strong as Earth’s and spins rapidly in time with the planet’s 10-hour rotation period. This field captures and accelerates charged particles from Jupiter’s space environment to create powerful radiation belts. The radiation is a constant, physical presence – a kind of space weather – bombarding everything in its sphere of influence with damaging particles.

“Jupiter has the most intense radiation environment other than the Sun in the solar system,” Jun said. “The radiation environment is affecting every aspect of the mission.”

That’s why when the spacecraft arrives at Jupiter in 2030, Europa Clipper won’t simply park in orbit around Europa. Instead, like some previous spacecraft that studied the Jovian system, it will make a wide-ranging orbit of Jupiter itself to move away from the planet and its harsh radiation as much as possible. During those looping orbits of the planet, the spacecraft will fly past Europa nearly 50 times to gather scientific data.

The radiation is so intense that scientists believe it modifies the surface of Europa, causing visible color changes, said Tom Nordheim, a planetary scientist at JPL who specializes in icy outer moons – Europa as well as Saturn’s Enceladus.

“Radiation on the surface of Europa is a major geologic modification process,” Nordheim said. “When you look at Europa – you know, the reddish-brown color – scientists have shown that this is consistent with radiation processing.”

So even as engineers work to keep radiation out of Europa Clipper, scientists like Nordheim and Jun hope to use the space probe to study it.

“With a dedicated radiation monitoring unit, and using opportunistic radiation data from its instruments, Europa Clipper will help reveal the unique and challenging radiation environment at Jupiter,” Jun said.

Nordheim zeroes in on Europa’s “chaos terrain,” areas where blocks of surface material appear to have broken apart, rotated, and moved into new positions, in many cases preserving preexisting linear fracture patterns.

Deep beneath the moon’s icy surface is a vast liquid-water ocean, scientists believe, that could offer a habitable environment for life. Some areas of Europa’s surface show evidence of material transport from the subsurface to the surface. “We need to understand the context of how radiation modified that material,” Nordheim said. “It can alter the chemical makeup of the material.”

Because Europa’s ocean is locked inside an envelope of ice, any possible life forms would not be able to rely directly on the Sun for energy, as plants do on Earth. Instead, they’d need an alternative energy source, such as heat or chemical energy. Radiation raining down on Europa’s surface could help provide such a source by creating oxidants, such as oxygen or hydrogen peroxide, as the radiation interacts with the surface ice layer.

Over time, these oxidants could be transported from the surface to the interior ocean. “The surface could be a window into the subsurface,” Nordheim said. A better understanding of such processes could provide a key to unlock more of the Jupiter system’s secrets, he added: “Radiation is one of the things that makes Europa so interesting. It’s part of the story.”

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, NASA’s JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

Salts and Organics Observed on Ganymede’s Surface by NASA’s Juno

NASA’s Juno mission has observed mineral salts and organic compounds on the surface of Jupiter’s moon Ganymede. Data for this discovery was collected by the JIRAM (Jovian InfraRed Auroral Mapper) spectrometer aboard the spacecraft during a close flyby of the icy moon. The findings, which could help scientists better understand the origin of Ganymede and the composition of its deep ocean, were published on Oct. 30 in the journal Nature Astronomy.

Larger than the planet Mercury, Ganymede is the biggest of Jupiter’s moons and has long been of great interest to scientists due to the vast internal ocean of water hidden beneath its icy crust. Previous spectroscopic observations by NASA’s Galileo spacecraft and Hubble Space Telescope as well as the European Southern Observatory’s Very Large Telescope hinted at the presence of salts and organics, but the spatial resolution of those observations was too low to make a determination.

On June 7, 2021, Juno flew over Ganymede at a minimum altitude of 650 miles. Shortly after the time of closest approach, the JIRAM instrument acquired infrared images and infrared spectra (essentially the chemical fingerprints of materials, based on how they reflect light) of the moon’s surface. Built by the Italian Space Agency, Agenzia Spaziale Italiana, JIRAM was designed to capture the infrared light (invisible to the naked eye) that emerges from deep inside Jupiter, probing the weather layer down to 30 to 45 miles below the gas giant’s cloud tops. But the instrument has also been used to offer insights into the terrain of moons Io, Europa, Ganymede, and Callisto (known collectively as the Galilean moons for their discoverer, Galileo).

The JIRAM data of Ganymede obtained during the flyby achieved an unprecedented spatial resolution for infrared spectroscopy – better than 0.62 miles per pixel. With it, Juno scientists were able to detect and analyze the unique spectral features of non-water-ice materials, including hydrated sodium chloride, ammonium chloride, sodium bicarbonate, and possibly aliphatic aldehydes.

“The presence of ammoniated salts suggests that Ganymede may have accumulated materials cold enough to condense ammonia during its formation,” said Federico Tosi, a Juno co-investigator from Italy’s National Institute for Astrophysics in Rome and lead author of the paper. “The carbonate salts could be remnants of carbon dioxide-rich ices.”

Previous modeling of Ganymede’s magnetic field determined the moon’s equatorial region, up to a latitude of about 40 degrees, is shielded from the energetic electron and heavy ion bombardment created by Jupiter’s hellish magnetic field. The presence of such particle fluxes is well known to negatively impact salts and organics.

During the June 2021 flyby, JIRAM covered a narrow range of latitudes (10 degrees north to 30 degrees north) and a broader range of longitudes (minus 35 degrees east to 40 degrees east) in the Jupiter-facing hemisphere.

“We found the greatest abundance of salts and organics in the dark and bright terrains at latitudes protected by the magnetic field,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “This suggests we are seeing the remnants of a deep ocean brine that reached the surface of this frozen world.”

Ganymede is not the only Jovian world Juno has flown by. The moon Europa, thought to harbor an ocean under its icy crust, also came under Juno’s gaze, first in October 2021 and then in September 2022. Now Io is receiving the flyby treatment. The next close approach to that volcano-festooned world is scheduled for Dec. 30, when the spacecraft will come within 932 miles of Io’s surface.

NASA’s Jet Propulsion Laboratory in Pasadena, California, a division of Caltech, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. The Italian Space Agency funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 04-08 November 2024
      Discover our week through the lens
      View the full article
    • By NASA
      1 Min Read Oral History with Stephen G. Jurczyk, 1962 – 2023
      NASA Acting Administrator Stephen G. Jurczyk Credits: NASA Steve Jurczyk’s NASA career began in 1988 at Langley Research Center as an engineer in the Electronic Systems Branch. During his time at Langley, he served in other roles, including director of engineering and director of research and technology.  Jurczyk was named as director of Langley in 2014, then in 2015 he left Langley to serve as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters.  He quickly rose to the rank of associate administrator in 2018, and in January 2021 was named the agency’s acting administrator
      Read more about Steve Jurczyk
      NASA Oral History, September 22, 1921 NASA Honors Steve Jurczyk The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By NASA
      1 Min Read Oral History with Mary L. Cleave, 1947 – 2023
      61B-21-008 (26 Nov-1 Dec 1985) —The STS 61-B crew on the flight deck of the earth-orbiting Atlantis. Left to right, back row, are astronauts Jerry L. Ross, Brewster Shaw Jr., Mary L. Cleave, and Bryan D. O'Connor; and payload specialist Rodolfo Neri. Front row, left to right, payload specialist Charles D. Walker and astronaut Sherwood C. Spring. A veteran of two space flights, Dr. Cleave served as a mission specialist on STS-61B and STS-30.  She went on to join NASA’s Goddard Space Flight Center and worked in the Laboratory for Hydrospheric Processes as the Project Manager for SeaWiFS, an ocean color sensor which is monitoring vegetation globally.  Dr. Cleave next served as Deputy Associate Administrator, Office of Earth Science, NASA Headquarters, until her retirement in 2007.
      Read more about Dr. Mary L. Cleave
      NASA Oral History, March 5, 2002 NASA Biography NASA Remembers Trailblazing Astronaut, Scientist Mary Cleave In Memoriam: Mary Cleave The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By NASA
      6 Min Read Lagniappe for November 2024
      Explore the November 2024 issue, highlighting a milestone for future Artemis testing, a key step to expand NASA Stennis Range Operations work, and more! Explore Lagniappe for November 2024 featuring:
      NASA Stennis Takes Key Step in Expanding its Range Operations Work NASA Stennis Plants Artemis Moon Tree NASA Employees Complete Agency Leadership Program Gator Speaks
      Gator SpeaksNASA/Stennis The month of October is known for becoming cooler in these parts, and there sure were plenty of recent cool moments for NASA Stennis that set the tone for the future.
      Last month, the center marked a milestone for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      Crews safely lifted and installed the interstage simulator component that will be used for future testing of NASA’s exploration upper stage on the B-2 side of the Thad Cochran Test Stand.
      Why does this matter?
      When the new upper stage is ready to fly following testing at NASA Stennis, it will allow NASA to send astronauts and larger payloads to the Moon on a single mission.
      It is expected to fly on Artemis IV when astronauts will live and work in humanity’s first lunar space station, Gateway.
      How exciting! This mission will make possible new opportunities for science and preparation for human missions to Mars.
      The massive interstage simulator component lifted and installed at NASA Stennis is 103 tons, or 206,000 pounds. When you learn about the exploration upper stage, and how it functions, it makes sense. The upper stage is powered by four engines and provides more than 97,000 pounds of thrust.
      Speaking of missions to the Moon, have you ever asked yourself why are we returning to the Moon?
      A few goals NASA has set for Artemis missions include: preparing for future exploration missions deeper into space – including Mars – by developing and proving new technologies and capabilities, while learning how to live and operate on the lunar surface; finding and using water and other critical resources needed for long-term exploration; and investigating the Moon’s mysteries to learn more about Earth and the universe for the benefit of all.
      These long-term plans build on more than 50 years of NASA’s experience and are reigniting everyone’s passion for discovery.
      I believe it because the grandgators have been talking NASA nonstop lately.
      All of this culminates with inspiring the Artemis Generation and encouraging young people to pursue studies and careers in science, technology, engineering, and mathematics.
      Throughout the month of October, NASA Stennis representatives have been doing just that, sharing the cool ways NASA explores, innovates, and inspires all of humanity and the Artemis Generation.
      Such stops have included Congressman Bennie Thompson’s College and Career Fair in Greenville, Mississippi, located in the Yazoo-Mississippi Delta area, bordering the state of Arkansas; Cruisin’ the Coast, where car enthusiasts from over 37 states and Canada drive to the Mississippi Gulf Coast annually; and various college and career fairs throughout Pearl River County and Hancock County, areas where many NASA Stennis employees live.
      October indeed was a cool month, and November has started off that way, too. NASA Stennis representatives participated in the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, one of Pensacola’s largest events with more than 150,000 in attendance.
      It marked just the fifth time in history that the U.S. Air Force Thunderbirds and U.S. Navy Blue Angels have flown together. This event also celebrated the 55th anniversary of NASA’s lunar landing.
      Pretty cool, huh?
      > Back to Top
      NASA Stennis Top News
      NASA Stennis Achieves Milestone in Preparation for Future Artemis Testing
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieved a key milestone this week for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      Read More About the Interstage Simulator Lift NASA Stennis Takes Key Step in Expanding its Range Operations Work
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a key step towards achieving a strategic center goal.
      Read More About the Agreement with Skydweller Aero NASA Stennis Conducts Water Flush at Fred Haise Test Stand
      Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin NASA Employees Complete Agency Leadership Program
      Eli Ouder, left, and Thom Rich are pictured at NASA Headquarters in Washington on Oct. 23 after graduating from the NASA ASPIRE Program. Ouder is the procurement officer for NASA’s Stennis Space Center and NASA Shared Services Center. Rich is the associate director of the NASA Stennis Center Operations Directorate. The two were part of the first cohort in the new 18-month leadership program to prepare NASA leaders for executive leadership roles in the future. NASA NASA Stennis Plants Artemis Moon Tree
      NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin Read More About the Artemis Moon Tree NASA Stennis Crews Continue Exploration Upper Stage Preparations
      A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023.
      Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges.
      Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023.
      Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges.
      Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin > Back to Top
      Center Activities
      LSU Engineering Students Visit NASA Stennis
      Members of the Society for the Advancement of Material and Process Engineering at Louisiana State University stand at the Thad Cochran Test Stand during a visit to NASA Stennis on Oct. 4. The Thad Cochran Test Stand (B-2) is where future Green Run testing of NASA’s exploration upper stage will take place ahead of future Artemis missions to the Moon and beyond. The mission of the Society for the Advancement of Material and Process Engineering at LSU is to provide enhanced educational opportunities by delivering information on new and advanced materials and processing technology. NASA/Danny Nowlin U.S. Ambassador Visits NASA Stennis
      Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin NASA Stennis Highlights Return to the Moon in Louisiana
      NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis Hosts Office of the Chief Information Officer Teams
      The NASA Office of the Chief Information Officer Integrated Design and Assurance Systems team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 9. To accomplish NASA’s vision, the agency depends heavily on many things and information technology is key among them. Information technology capabilities enable NASA’s discoveries, allow sharing of mission data, improve workforce productivity, and increase mission quality, resilience, and cost-effectiveness. To enable success for NASA’s mission portfolio, the Office of the Chief Information Officer goals are to deliver great customer experiences; achieve consistent operational excellence; transform NASA through information and technology; and ensure proactive, resilient cybersecurity – all delivered by an exceptional team.NASA/Danny Nowlin Members of the NASA Office of the Chief Information Officer Strategy and Architecture Office team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 31. The NASA team visited NASA Stennis as part of an annual face-to-face meeting. The Strategy and Architecture Office collaboratively develops and manages Information Technology strategy and architecture to meet NASA’s current and future needs, driving transformation, innovation, informed investment planning, and processes to measure and communicate results. Development includes NASA’s Information Technology Strategic Plan, integrated roadmaps, future-state business capabilities and services, and data-driven investment guidance. NASA/Danny Nowlin Start Your Engines: NASA Stennis Cruises on the Coast
      NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson Stennis Hosts Family Day at INFINITY
      NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin Java with John: Brewing Conversations and Connection with NASA Stennis Employees
      NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Attends Blue Angels Airshow
      NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Attends Picayune Street Fair
      NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis > Back to Top
      NASA in the News
      Liftoff! NASA’s Europa Clipper Sails Toward Ocean Moon of Jupiter – NASA NASA Activates Resources to Help Assess Impacts from Hurricane Milton – NASA NASA Welcomes Estonia as Newest Artemis Accords Signatory – NASA How NASA Astronauts Vote from Space Aboard International Space Station  – NASA NASA: New Insights into How Mars Became Uninhabitable – NASA Science > Back to Top
      Employee Profile: Tessa Keating
      Tessa Keating is a public affairs specialist in the Office of Communications at NASA’s Stennis Space Center. Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center.NASA/Danny Nowlin Every task at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is not simply work for Tessa Keating – it is a meaningful step toward a part of something great.
      Read More About Tessa Keating > Back to Top
      Additional Resources
      WXXV: Developing autonomous space technology at NASA Stennis FOX8: NASA Astro Camp Community Partners Program WXXV: Catching up with Stennis Space Center’s new director New and Notables: John Bailey – Biz New Orleans Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis employees Lee English Jr. and Noah English) Certifying Artemis Rocket Engines – NASA (Houston We Have a Podcast segment featuring NASA Stennis engineers Chip Ellis and Bradley Tyree) NASA Stennis Overview – Going Further video Subscription Info
      Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).
      The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.
      To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.
      Explore More
      4 min read Lagniappe for October 2024
      Article 1 month ago 7 min read Lagniappe for September 2024
      Article 2 months ago 5 min read Lagniappe for August 2024
      Article 3 months ago View the full article
    • By NASA
      Skywatching Home What’s Up: November 2024… Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ   See the Moon Hide a Bright Star
      In the early morning hours of November 27, catch a rare lunar occultation of Spica visible from parts of the U.S. and Canada.
      Skywatching Highlights
      All month – Planet visibility report: Saturn shines in the south most of the night, Jupiter rises in the early evening alongside Taurus and Orion, while Mars trails a couple of hours behind, visible high in the early morning sky. November 4 – Slim crescent Moon pairs with Venus. Enjoy a beautiful sight just after sunset as the Moon and Venus meet up in the southwestern sky. November 10 – Saturn & the Moon. The ringed planet has a close pairing with the Moon tonight (perfect for binoculars) November 27 – Lunar occultation of Spica. Early risers in the eastern U.S. and Canada can catch the Moon passing in front of Spica this morning, briefly hiding the bright star from view. Transcript
      What’s Up for November?
      When to look for Saturn, Jupiter, and Mars this month, a NASA spacecraft swings by Venus on its way to the Sun, and the tricky business of seeing the Moon hide a bright star. And stick around until the end for photos of highlights from last month’s skies.
      Saturn is visible toward the south for most of the night. For observers in the Americas, it has a close meetup with the Moon on the 10th, when the pair will appear less than a degree apart just after dark, making for a great sight through binoculars. Check the sky again around midnight, and you’ll see the Moon has visibly shifted a couple of degrees west of Saturn, showing evidence of the Moon’s orbital motion in just a few hours.
      In late 2024, Jupiter could be found high overhead as dawn approached with the bright stars of Taurus and Orion. (Jupiter is the bright object at top, right of center.) NASA/Preston Dyches Jupiter is rising in the east early in the night, together with the bright stars of the constellations Taurus and Orion, and working its way across the sky by dawn. By the end of November, it’s rising just as the sky is getting dark. Mars follows behind Jupiter, rising about three hours after the giant planet.
      As in October, early risers will find the Red Planet high overhead in the morning sky before dawn. In the evening sky, Venus is low in the southwest following sunset throughout the month of November. It’s blazing bright and unmistakable if you find a relatively unobstructed view. It appears much higher in the sky for those in the Southern Hemisphere, who’ll also be able to easily observe Mercury after sunset this month. And on the 4th, a slim crescent Moon will appear just below Venus for a beautiful pairing as the glow of sunset fades.
      Now, staying with Venus, one of NASA’s intrepid solar system explorers is headed for a close encounter with this Earth-sized hothouse of a planet on November 6th. Parker Solar Probe studies our planet’s nearest star, the Sun. Its mission is to trace the flow of energy that heats the Sun’s outer atmosphere and accelerates the million-mile-per-hour stream of particles it emits. It makes its measurements from super close to the Sun, within the region where all the action happens. To do this, the spacecraft was designed to fly within just 4 million miles of the Sun’s surface, which is 10 times closer than the orbit of the closest planet, Mercury. No other spacecraft has ever gotten this close to the Sun before. In the six years since its launch, the spacecraft has made a bunch of approaches to the Sun, using flybys of the planet Venus to shape its orbit. The November 6th flyby is the final such maneuver, intended to send the spacecraft toward its three closest-ever solar approaches, starting on December 24th. During this last Venus flyby, the mission will capture images of the planet. Previous views returned by Parker showed that the spacecraft could actually see features of the Venusian surface through its dense cloud cover. So look out for Venus in the evening sky, as the brilliant planet helps a craft from Earth to touch the face of the Sun.
      In the couple of hours before sunrise on November 27th, skywatchers in the eastern half of the U.S. and Canada will have the chance to witness an occultation – an event where the Moon passes in front of, and temporarily hides, a bright star – in this case Spica. Observers in other parts of the world will see the Moon pass extremely close to Spica, but won’t see it cover up the star. This occultation is one of a series that began in June and will continue monthly through late next year. These happen as the Moon’s orbit slowly shifts northward and southward across the sky, and every so often, its path crosses in front of Spica monthly for a time. But each occultation is only visible from a small portion of Earth. For example, while this November event favors North American viewers, South American observers will get their chance next April. For U.S. skywatchers, this November occultation is the last good opportunity in this series to see the Moon occult Spica until 2032, when a new series of monthly occultations will begin for locations across the globe. Now, if you miss this event, don’t worry!
      The Moon also passes in front of three other bright stars from time to time. This means that no matter where you’re located, you’ll have the opportunity before too long to witness the impressive sight of a bright star briefly disappearing behind the Moon.
      Watch our video for views of what some of the highlights we told you about in last month’s video actually looked like.
      The phases of the Moon for November 2024. NASA/JPL-Caltech Above are the phases of the Moon for November.
      Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov.
      I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Asteroids, Comets & Meteors



      Moons



      Planets



      Solar System Exploration


      View the full article
  • Check out these Videos

×
×
  • Create New...