Jump to content

Rita Owens: Keeper of NASA’s Digital Knowledge


NASA

Recommended Posts

  • Publishers

9 min read

Rita Owens: Keeper of NASA’s Digital Knowledge

Rita Owens, a woman with shoulder-length, light brown hair, smiles at the camera in a casual outdoor portrait. She wears a patterned blue dress and stands in front of a tree. More green trees, a stone wall and brick buildings with cars are visible in the background.
Data systems engineer Rita Owens helps Goddard curate, secure, and organize its wealth of scientific data. “It makes everyone’s job easier and more efficient and aligns with NASA’s goals – discovering and expanding knowledge for the benefit of humanity,” she said.
Courtesy of Rita Owens

Name: Rita Owens

Formal Job Classification: Data Systems Engineer

Organization: Data Steward, Data Stewardship and Governance

Information, Data, & Analytics Services (IDAS)

Office of the Chief Information Officer (OCIO)

(Detailed to IDAS/OCIO from GSFC Code 565, Engineering and Technology Directorate)

What do you do and what is most interesting about your role here at Goddard? 

As a data systems engineer, I support Data Governance and Stewardship under Data and Analytics Services with evaluation of data cataloging solutions and manage implementation of data governance, stewardship policies and data catalog. I enjoy working and gaining experience with other professionals in various information technology specialties at other NASA centers.

What is your educational background?

My favorite subjects in high school were math, science, and art. While in high school, I went to a summer camp at the Rochester Institute of Technology to learn about STEM careers. I chose engineering because women were in high demand in this male-dominated field for diversity, and it also offered plenty of job opportunities. I majored in undeclared engineering during my freshman year at RIT. I met with an advisor at RIT to discuss my major of study and he suggested electrical engineering because of the technical advances, the increasing importance of electronics, and the amount of math involved. He gave a good example of a mechanical typewriter becoming an electronic typewriter. 

I graduated from RIT with a BS degree in electrical engineering in 1993. Also, I got a master’s degree in electrical engineering from Johns Hopkins University in 1998 while working for NASA.

Why did you come to Goddard? 

In 1991, while a student at RIT, I participated in a summer internship program at Goddard that was sponsored by Gallaudet University. I thought it was an exciting opportunity to work for NASA near my home in Maryland. I developed and implemented several programs for an image compression project at the Flight Data Systems Branch.

The next fall and then the following summer, I participated in a co-op program and assisted with the power supply designs for spacecraft in the Space Power Applications Branch at Goddard. I was offered a permanent position at that branch early before I graduated in 1993. I was excited and accepted that offer immediately.

How does your detail to OCIO help with NASA’s digital transformation? 

Digital transformation helps NASA’s people by improving data quality, accessibility, and security. We are transforming how NASA operates by using our own digital capabilities to be smarter about storing and managing knowledge. NASA has learned a lot and built a valuable collection of information, so curating, securing, and organizing that information is an important and satisfying responsibility.

It makes everyone’s job easier and more efficient and aligns with NASA’s goals – discovering and expanding knowledge for the benefit of humanity. Since last year, I have been gaining experience and developing skills in IT and software areas such as data systems, visualization tools, and web development.

After working over 30 years at Goddard, what are some of your most memorable moments?

In my earlier career, I designed and developed power supplies for electrical power systems on a variety of spacecraft that have flown in space. Specifically, I worked with the power and switching distribution units for spacecraft instruments such as the Suzaku mission’s X-ray Spectrometer, Tracking and Data Relay Satellites (TDRS), and the Wilkinson Microwave Anisotropy Probe.   

I also have done digital designs and technical documentation for many spacecraft missions such as space shuttle Hitchhiker payloads, the James Webb Space Telescope, Lunar Reconnaissance Orbiter, ICESat-2, and others. 

Building hardware to help scientists reach their goals and seeing successful launches of our spacecraft into orbit and the solar system made me feel very proud.

What is some of the most important advice your mentors have given you? 

A former director of the Applied Engineering and Technology Directorate encouraged us to leave our comfort zones and learn new things to broaden our horizons and increase our skill base. He did not want us to get stuck in a rut and encouraged us to work outside our branch. I started in the Power Systems branch and then worked in several other branches doing digital electronics designs and many other projects including research and development. I am now in software development and IT. I worked in a lot of different areas that expanded my skills, showed me how things are done in different areas, and gave me a broader view.

As a mentor, what advice do you give?

I would advise students to get work experience in different areas of their major study to find what they feel is the best fit. A co-op would be a good way to go because they can work while in college which helps them select the right field. RIT required us to do co-ops as part of our undergraduate program in engineering. So, my work experience in several different engineering fields in both the private industry and government as co-ops helped lead me to the right career field. Take advantage of internships and co-ops. 

Rita Owens, a woman with shoulder-length, light brown hair, smiles and stands in front of a large inflatable shaped like the NASA logo. It is a large, bright blue circle dotted with stars and crossed by a red, V-shaped swoosh. "NASA" is written in large white text on the circle. Rita wears a patterned blue dress and black sandals. It is a bright, sunny day with blue sky, puffy clouds, and green grass. A building and trucks are visible behind the NASA inflatable.
Data systems engineer Rita Owens is deaf, and she advocates for fellow employees with disabilities. “Managers need to listen, communicate well, and be open-minded with a positive attitude toward those of us with disabilities or health conditions,” she said.
Courtesy of Rita Owens

Are you involved with any of Goddard’s Employee Resources Groups (ERGs)?

Over 10 years ago, I was the chair of the Equal Accessibility Advisory Committee (EAAC). Advisory committees are now called employee resources groups. When I was a chair of the People with Disabilities Advisory Committee, it was quite small. I proposed to change the name of the committee to equal accessibility for a more positive image as we need to focus on accessibility instead of disabilities. It did help grow our popularity at Goddard. I also proposed expanding our EAAC community for more diversity to include those with non-disability health conditions such as diabetes and bipolar depression. As a result, many more employees joined our committee, including several managers. I also arranged many events to raise disability awareness, such as the employees with disabilities panel and etiquette workshops.

I am currently the co-chair of the Equal Accessibility ERG. I would like to see all employees continue to have equal accessibility in the workplace. So, I encourage Goddard to help break down all the barriers for everyone to become more productive at work, to support NASA’s goals more effectively. I also attempt to raise awareness of employees with disabilities and health conditions and their accommodations while helping educate the Goddard community through events such as American Sign Language (ASL) Brown Bag sessions and Disability & Health Awareness presentations and workshops such as Suicide Awareness, Deaf Awareness and Etiquette, Recruiting People with Disabilities Workshop, etc. We hope to educate everyone at Goddard about how to interact effectively with and be inclusive of people with disabilities.

I recently gave a presentation to our center director about some of our accomplishments and our plans for the coming year. I mentioned some of the challenges that employees with disabilities face including barriers at the workplace.

I also serve as part of the Goddard Diversity, Equity, Inclusion, and Accessibility Implementation Team. The team is assisting in the development of the DEIA Implementation Plan that aligns with the NASA DEIA Strategic Plan. Also, I support Workforce Recruitment Program (WRP) as a recruiter for candidates with disabilities and attend job fairs as part of the disability recruitment efforts at NASA Headquarters.

Also, I serve as an area vice president of the Goddard Engineers, Scientists, and Technicians Association (GESTA) under the International Federation of Professional and Technical Engineers (IFPTE) Local 29. In that role, I advocate for STEM professionals and assist in improving our workplace.

What are some of the personal challenges you have faced?

When I started at Goddard, another deaf engineer and I brought up the need for expanded American Sign Language interpreting services for our heavily technical work. The center director at the time decided to allow me and other deaf engineers to develop our statement of work and choose the best interpreting service, since we knew exactly what we needed. We now have a much more robust interpreting services contract. That made a huge difference to our careers. 

What advice would you give to a manager of someone with disabilities?

Managers need to listen, communicate well, and be open-minded with a positive attitude toward those of us with disabilities or health conditions. Also, I encourage managers to take training in reasonable accommodations for employees with disabilities for inclusion as well as provide plenty of work opportunities to everyone equally for their career growth. 

Managers should ask employees with disabilities to find out what accommodations they need and give them equal opportunities for growth in their careers. They should give the employees plenty of work opportunities to advance their careers, too. 

What do you do for fun?

I used to love making oil paintings of landscapes and florals. I go to paint nights sometimes with friends and family. I also enjoy traveling with my family and learning new things with them in other countries. It is fun exposing my three children to different cultures. Also, I love doing outdoor adventures such as hiking and cycling. 

Also, someday I would love to go to a launch and watch it live as I have never been to one!

Is there anyone you would like to thank?

I would like to thank my mom, who was my role model. She balanced a family with a career as a physician. I was so amazed at all her successes, and she was also my best friend. She encouraged me to be independent as a career professional and cherish family values.  

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Independent. Determined. Persistent. Creative. Inquisitive. Mom. 

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 01, 2023
Editor
Jessica Evans
Contact
Rob Garner
rob.garner@nasa.gov
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      “Some people [may say], ‘You have too many cooks in the kitchen,’ but I think there’s a line. It’s good to have a lot of input because people bring many different perspectives that you would never even consider if you just pushed an idea forward with one person. This is especially true in the area we work in with digital [communications], which is changing so frequently; you constantly have to innovate, so including diverse voices and thoughts is important.
      “I’m an older sister, and I don’t know if some of that [leadership style] comes from when we were kids, always making sure that I involved her and ensuring people could understand what she wanted or needed. And maybe that translated into who I am, making sure people have voices and are heard [at NASA]…I’ve achieved a lot that I didn’t even know I wanted to accomplish because I couldn’t have imagined this career progression for myself. 
      “But now that I’m here, I would like to achieve more in terms of what NASA looks like internally, especially after getting involved with the NASA Science IDEA working group and diversity efforts. I would love to one, help people outside of NASA realize that they could work here and two, push people internally to the forefront so that they can be considered for higher-level things and progress.”
      – Emily Furfaro, Digital Manager, Science Mission Directorate, NASA Headquarters
      Image Credit: NASA/Keegan Barber
      Interviewer: NASA/Tahira Allen
      Check out some of our other Faces of NASA. 
      View the full article
    • By European Space Agency
      Destination Earth is now live! Launched today during a ceremony at the EuroHPC LUMI Supercomputer Centre in Kajaani, Finland, Destination Earth provides unprecedented insights into the complexity of our planet to advance climate change adaption and environmental resilience modelling.
      View the full article
    • By NASA
      Photo of Matt Dosberg
      It is impossible to pinpoint a single, static definition of what makes a “Digital Transformer.” Although Matt Dosberg’s official title is Digital Transformation and IT Innovation Lead for Goddard Space Flight Center (GSFC), his full contributions to NASA require a lengthier description. He is the nexus for everything under the Digital Transformation (DT) umbrella at GSFC, including digital engineering, AI, data-driven programmatics, data strategy, and more. He serves as liaison to the agency-level DT team and other centers, coordinating across directorates to drive cultural change within the organization, and has sponsored multiple DT events at GSFC, including the center’s first AI Symposium. He strategizes on rolling out proof of concepts and pilots, working toward solutions that address agency-wide barriers to technology readiness and adoption. Dosberg doesn’t just do transformative work—he embodies transformation in an ever-adaptive role.   
      In his three and a half years at NASA, Dosberg has impacted the agency beyond quantitative measures. Of course, his formal accomplishments are extensive, including co-leadership positions for the Goddard AI strategy, Goddard Data Strategy Working Group, and SPARTA (Smart Projects and Reviews with Transformative Analytics) Project. He works with the GSFC Chief Technologist to co-fund various initiatives for weaving digital technology into next-generation, mission-enabling solutions. However, his commitment to qualitative, ground-level change, impacting the agency through its culture and people, is demonstrated by how he measures success. “You could look at community adoption and engagement,” he says, highlighting his team’s efforts in hosting events and building community around Digital Transformation. “I’m trying to enable teams and empower people to really achieve the best that they can achieve and help transform how we work here at Goddard.”  
      Dosberg attributes his team-building skills and service-oriented approach to his experience working at the Department of Homeland Security in US Citizenship and Immigration Services. As a program manager, he led the Digital Innovation & Development team, which worked to transform the asylum and refugee program from paper-based to fully digital processing. “I think that really set me up for success here,” says Dosberg. “That technology background and the experience of going through a successful digital transformation, and the cultural change aspect…all those things are kind of principles and success factors that I brought over to Goddard to lead the DT efforts here.”  
      Although Dosberg does not come from explicitly scientific background—he received an undergraduate degree in economics, master’s degree in finance, and MBA—he has always been deeply interested in and curious about technology. In his daily work, he leverages the collaborative capabilities of tools like Microsoft Teams and Mural to aid in brainstorming and soliciting input. When reflecting on the technology he uses to drive transformation within the agency, he highlights his work on SPARTA, a DT Catalyst Project that establishes interoperable architecture for managing project reviews and data. Dosberg sees data as a foundational layer to his work; by developing common tools like SPARTA for accessing, aggregating, and sharing data across the agency, he hopes to strengthen inclusive teaming at an organizational level.  
      Dosberg’s dedication is apparent in how thoughtfully he reflects on his past and present experiences as a Digital Transformer. However, his passion truly shines through when he considers the future of Digital Transformation. “There’s real opportunity to transform and change the way that we are working…Jill [Marlowe] and the DT team have done an incredible job on building momentum, getting folks excited, bringing centers together.”  
      Although it is difficult to distill the many reasons why Dosberg was selected as the first featured Digital Transformer of the Month, this may be a good place to start: “At the end of the day, I’m just super passionate about the work that NASA does,” he says. “The portfolio is truly inspiring and I’m excited to help position the center to take on new projects, be more efficient, and enable the workforce. That motivates me each day.” 
      View the full article
    • By NASA
      Summary
      In responding to Milestone 4.2 of the Digital Government Strategy, NASA heeded the Advisory Group’s encouragement to “build upon existing structures and processes as much as possible.” To locate the gaps in existing governance structures, NASA’s Digital Strategy response team identified all necessary decisions concerning digital services, using the three layers pointed out in the Digital Strategy-information, platform, presentation-as a guide.
      This decision matrix illustrated gaps in governance that need to be addressed in order for NASA’s Digital Services to align with the Digital Government Strategy. Going forward, these gaps will be addressed by the NASA Digital Services Governance Framework. This newly established framework, in conjunction with established Agency policy and procedural requirements, encompasses the requirements for overseeing the development and delivery of enterprise digital services. It proposes a new implementation body, the Digital Services Board, reporting to the established Mission Support Council, which will serve as the policymaking body. NASA expects to charter the Digital Services Board in early 2013. In all other ways, the framework relies on existing governance and organizational responsibilities.
      In the Digital Services Governance Recommendations, the discussion of an ideal digital services governance structure is set around six essential elements. The first three elements (Clearly Defined Scope of Authority, Core Principles to Guide Action, and Established Roles and Responsibilities) are addressed in this document. The next three (Stakeholder Input and Participation, Consistent Communications, and Performance Metrics) will be addressed in NASA’s follow-up in January 2013, along with reporting on performance and customer satisfaction measuring tools.
      Addressing the Elements
      Element A: Clearly Defined Scope of Authority
      The world is connected more now than ever before, and there is an exponential growth in the number of services available online. In carrying out our missions, NASA offers a number of services both to internal customers and to the public in the form of information delivery, transactional applications, and other mechanisms across a variety of platforms.
      At NASA, the governance of the Digital Strategy is shared among several key stakeholder groups, most prominently the Office of the Chief Information Officer (OCIO) and the Office of Communications (OCOMM). These stakeholders realize the value and potential of embracing digital services to lower costs, increase citizen participation, and make it easier to collaborate and share information.
      With this distribution of ownership, the question of accountability and leadership becomes critical. The proposed Digital Services Board (DSB) will represent all stakeholders within NASA and carry the authority, responsibility, and resources to gather, prioritize, and direct the implementation of Agency-wide requirements.
      Element B: Core Principles to Guide Action
      NASA is dedicated to a number of principles by which we guide our delivery of digital services. The Agency’s primary customers are the American public. This presents a broad service concept that can be segmented into different audiences with needs for different digital services: information for the general public, educational materials for teachers and students, procurement opportunities for businesses, and research efforts for the scientific and engineering communities. Any of these individual audiences may be best served by different elements of NASA. Each aspect of our mission is dedicated to providing the maximum value and benefit to citizens, and every NASA employee and contractor is responsible for ensuring the success of that mission.
      The American public deserves nothing less than excellence in the digital services NASA offers both to the public and to its own operations. As such, the Agency is focused on creating a Digital Strategy that, much like our work in space, is bold, innovative, and lasting. We believe that the Digital Strategy is as much an exercise in quantitative measurements as it is a qualitative exercise in future-based policymaking. Thus, we have developed the following core principals that guide us:
      Every NASA service ought be created with a focus on its intended audience, which will lead to better user experience, expandability, and efficiency. Within the bounds of existing policies, NASA employees should be able to securely and seamlessly access and share information regardless of their location or preferred device. Digital Services should further NASA’s vision and purpose, including to “provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof”. Element C: Established Roles and Responsibilities
      Overall responsibilities of organizations with Digital Services roles can be found in NASA Policy Directive (NPD) 1000.3, “The NASA Organization.” The foundational layer of security, including roles and responsibilities, is governed under NASA Policy Directive (NPD) 2810.1, “NASA Information Security Policy,” and NASA Procedural Requirements (NPR) 2810.1, “Security of Information Technology.” Privacy is governed under NPD 1382.17, “NASA Privacy Policy,” and NPR 1382.1, “NASA Privacy Procedures.”
      The information layer is largely governed by the NASA Office of Communications at NASA Headquarters, with supporting offices at each of the NASA Centers ensuring appropriate dissemination of information, correctness of information, style, and NASA branding protection.
      Provisioning and governing the platform layer is largely the responsibility of the NASA Chief Information Officer, with support from the Service Executive for Web Services, the Web Services Board, the Enterprise Change Advisory Board, and Center Chief Information Officers at each of the NASA Centers.
      Currently, governance of the presentation layer falls under existing policies for style, privacy, records management, etc., while leaving the NASA Centers, mission directorates, and mission support offices the flexibility and authority to present content in the most effective manner in consideration of the data or information, targeted audience, and means of access (mobile devices, machine to machine interfaces, etc.).
      NASA Digital Services Governance Framework: Target State
      In reviewing current governance of digital services, NASA identified the gaps that the new governance framework will address. Existing governance structures are built with a clearly defined scope of authority, core principles, and established roles and responsibilities; going forward, gaps in governance will be addressed with these elements, as well as stakeholder input and participation, consistent communications, and performance metrics.
      Gap Proposed Process No group charged with working across NASA to develop Agency-wide requirements for digital services. The Mission Support Council will use input and recommendations from the proposed Digital Services Board to develop Agency-wide requirements for digital services and provide guidelines for their implementation. No cross-Agency group charged with policy development, implementation, and enforcement. The Mission Support Council will be the policymaking body for Digital Services, holding the Digital Services Board responsible for implementation and allocating resources for implementations. No repeatable process for the creation of new websites, the introduction of new free services to the Agency, taking successful pilot projects into Agency-wide operation, or spreading best practices across the agency. Based on policies established by the Mission Support Council, the Digital Services Board will work with stakeholders to develop and implement these processes.

      Last Updated: Aug. 7, 2017
      Editor: Jason Duley
      View the full article
    • By NASA
      7 min read
      Gamma-ray Bursts: Harvesting Knowledge From the Universe’s Most Powerful Explosions
      The most powerful events in the known universe – gamma-ray bursts (GRBs) – are short-lived outbursts of the highest-energy light. They can erupt with a quintillion (a 10 followed by 18 zeros) times the luminosity of our Sun. Now thought to announce the births of new black holes, they were discovered by accident.
      Two neutron stars begin to merge in this artist’s concept, blasting jets of high-speed particles. Collision events like this one create short gamma-ray bursts. Credit: NASA’s Goddard Space Flight Center/ A. Simonnet, Sonoma State University The backstory takes us to 1963, when the U.S. Air Force launched the Vela satellites to detect gamma rays from banned nuclear weapons tests. The United States had just signed a treaty with the United Kingdom and the Soviet Union to prohibit tests within Earth’s atmosphere, and the Vela satellites ensured all parties’ compliance. Instead, the satellites stumbled upon 16 gamma-ray events. By 1973, scientists could rule out that both Earth and the Sun were the sources of these brilliant eruptions. That’s when astronomers at Los Alamos National Laboratory published the first paper announcing these bursts originate beyond our solar system. Scientists at NASA’s Goddard Space Flight Center quickly confirmed the results through an X-ray detector on the IMP 6 satellite. It would take another two decades and contributions from the Italian Space Agency’s BeppoSax and NASA’s Compton Gamma-Ray Observatory to show that these outbursts occur far beyond our Milky Way galaxy, are evenly distributed across the sky, and are extraordinarily powerful. The closest GRB on record occurred more than 100 million light-years away.
      Though discovered by chance, GRBs have proven invaluable for today’s researchers. These flashes of light are rich with insight on phenomena like the end of life of very massive stars or the formation of black holes in distant galaxies.
      Still, there are plenty of scientific gems left to discover. In 2017, GRBs were first linked to gravitational waves – ripples in the fabric of space-time – steering us toward a better understanding of the how these events work.
      The Long and Short of GRBs
      Astronomers separate GRBs into two main classes: short (where the initial burst of gamma rays lasts less than two seconds) and long events (lasting two seconds or longer).
      Shorter bursts also produce fewer gamma rays overall, which lead researchers to hypothesize that the two classes originated from different progenitor systems.
      Astronomers now associate short bursts with the collision of either two neutron stars or a neutron star and a black hole, resulting in a black hole and a short-lived explosion. Short GRBs are sometimes followed by kilonovae, light produced by the radioactive decay of chemical elements. That decay generates even heavier elements, like gold, silver, and platinum.
      Long bursts are linked to the explosive deaths of massive stars. When a high-mass star runs out of nuclear fuel, its core collapses and then rebounds, driving a shock wave outward through the star. Astronomers see this explosion as a supernova. The core may form a either a neutron star or a black hole.
      In both classes, the newly born black hole beams jets in opposite directions. The jets, made of particles accelerated to near the speed of light, pierce through and eventually interact with the surrounding material, emitting gamma rays when they do.
      As a high-mass star explodes in this artist’s concept, it produces a jet of high-energy particles. We see GRBs when such gets point almost directly at Earth. Credit: NASA/Swift/Cruz deWilde This broad outline isn’t the last word, though. The more GRBs astronomers study, the more likely they’ll encounter events that challenge current classifications.  
      In August 2020, NASA’s Fermi Gamma-ray Space Telescope tracked down a second-long burst named GRB 200826A, over 6 billion light-years away. It should have fallen within the short-burst class, triggered by mergers of compact objects. However, other characteristics of this event – like the supernova it created – suggested it originated from the collapse of a massive star. Astronomers think this burst may have fizzled out before it could reach the duration typical of long bursts.
      Fermi and NASA’s Neil Gehrels Swift Observatory captured its opposite number, GRB 211211A in December 2021. Located a billion light-years away, the burst lasted for about a minute. While this makes it a long GRB, it was followed by a kilonova, which suggests it was triggered by a merger. Some researchers attribute this burst’s oddities to a neutron star merging with a black hole partner.
      As astronomers discover more bursts lasting several hours, there may still be a new class in the making: ultra-long GRBs. The energy created by the death of a high-mass star likely can’t sustain a burst for this long, so scientists must look to different origins.
      Some think ultra-long bursts occur from newborn magnetars – neutron stars with rapid rotation rates and magnetic fields a thousand times stronger than average. Others say this new class calls for the power of the universe’s largest stellar residents, blue supergiants. Researchers continue to explore ultra-long GRBs.
      Afterglows Shedding New Light
      While gamma rays are the most energetic form of light, they certainly aren’t the easiest to spot. Our eyes see only a narrow band of the electromagnetic spectrum. Studying any light outside that range, like gamma rays, hinges tightly on the instruments our scientists and engineers develop. This need for technology, alongside GRBs’ already fleeting nature, made bursts more difficult to study in early years.
      The Hubble Space Telescope’s Wide Field Camera 3 revealed the infrared afterglow (circled) of GRB 221009A and its host galaxy, seen nearly edge-on as a sliver of light extending to upper left from the burst. Credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University); Image Processing: Gladys Kober GRB afterglows occur when material in the jets interact with surrounding gas.
      Afterglows emit radio, infrared, optical, UV, X-ray, as well as gamma-ray light, which provides more data about the original burst. Afterglows also linger for hours to days (or even years) longer than their initial explosion, creating more opportunities for discovery.
      Studying afterglows became key to deducing the driving forces behind different bursts. In long bursts, as the afterglow dims, scientists eventually see the source brighten again as the underlying supernova becomes detectable.
      Although light is the universe’s fastest traveler, it can’t reach us instantaneously. By the time we detect a burst, millions to billions of years may have passed, allowing us to probe some of the early universe through distant afterglows.
      Bursting With Discovery
      Despite the expansive research conducted so far, our understanding of GRBs is far from complete. Each new discovery adds new facets to scientists’ gamma-ray burst models.
      Fermi and Swift discovered one of these revolutionary events in 2022 with GRB 221009A, a burst so bright it temporarily blinded most space-based gamma-ray instruments. A GRB of this magnitude is predicted to occur once every 10,000 years, making it likely the highest-luminosity event witnessed by human civilization. Astronomers accordingly dubbed it the brightest of all time – or the BOAT.
      This is one of the nearest long burst ever seen at the time of its discovery, offering scientists a closer look at the inner workings of not only GRBs, but also the structure of the Milky Way. By peering into the BOAT, they’ve discovered radio waves missing in other models and traced X-ray reflections to map out our galaxy’s hidden dust clouds.
      NASA’s Neil Gehrels Swift Observatory detected X-rays from the initial flash of GRB 221009A for weeks as dust in our galaxy scattered the light back to us, shown here in arbitrary colors. Credit: NASA/Swift/A. Beardmore (University of Leicester) GRBs also connect us to one of the universe’s most sought-after messengers. Gravitational waves are invisible distortions of space-time, born from cataclysmic events like neutron-star collisions. Think of space-time as the universe’s all-encompassing blanket, with gravitational waves as ripples wafting through the material.
      In 2017, Fermi spotted the gamma-ray flash of a neutron-star merger just 1.7 seconds after gravitational waves were detected from the same source. After traveling 130 million light-years, the gravitational waves reached Earth narrowly before the gamma rays, proving gravitational waves travel at the speed of light.
      Scientists had never detected light and gravitational waves’ joint journey all the way to Earth. These messengers combined paint a more vivid picture of merging neutron stars.
      With continued research, our ever-evolving knowledge of GRBs could unravel the unseen fabric of our universe. But the actual burst is just the tip of the iceberg. An endless bounty of information looms just beneath the surface, ready for the harvest.
      By Jenna Ahart
      About the Author
      NASA Universe Web Team

      Share








      Details
      Last Updated Feb 06, 2024 Related Terms
      Astronomy Astrophysics Black Holes Compton Gamma Ray Observatory (CGRO) Fermi Gamma-Ray Space Telescope Galaxies, Stars, & Black Holes Gamma Rays Gamma-Ray Bursts Neutron Stars Stars The Universe Explore More
      11 min read What is Dark Energy? Inside our accelerating, expanding Universe


      Article


      20 hours ago
      2 min read UNITE All-Nighter Delights Amateur Astronomers


      Article


      4 days ago
      2 min read Hubble Views a Dim but Distinct Galaxy


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...