Jump to content

November’s Night Sky Notes: Spy the Seventh Planet, Uranus


Recommended Posts

  • Publishers
Posted

3 min read

November’s Night Sky Notes: Spy the Seventh Planet, Uranus

uranusmain.png?w=1268
Look out, Saturn! The competition for the best ringed planet is getting larger. This new image of Uranus from NASA Webb displays a prominent ring system. Also in view: a white polar cap at the right side of the planet, and two bright spots likely connected to storm activity. How can the polar cap be on the right, and not the top or bottom? It’s because Uranus rotates at a nearly 90-degree angle from the plane of its orbit. This tilt makes Uranus appear to spin on its side.
NASA, ESA, CSA, STScI, Joseph DePasquale (STScI)

by Liz Kruesi of the Astronomical Society of the Pacific

You might be familiar with Saturn as the solar system’s ringed planet, with its enormous amount of dust and ice bits circling the giant planet. But Uranus, the next planet out from the Sun hosts an impressive ring system as well. The seventh planet was the first discovered telescopically instead of with unaided eyes, and it was astronomer extraordinaire William Herschel who discovered Uranus March 13, 1781. Nearly two centuries passed before an infrared telescope aboard a military cargo aircraft revealed the planet had rings in 1977.

Since that discovery, multiple observatories have revealed more details of Uranus and its ring system. Most recently, the NASA-led JWST space observatory captured the planet and its rings in detail. This recent image combines just 12 minutes of exposure in two filters to reveal 11 of the planet’s 13 rings. Even some of the planet’s atmospheric features are visible in this image. Even with advanced imaging like that from JWST, much of Uranus remains a mystery, including why it orbits the Sun on its side. This is because only one spacecraft has ever visited this planet: NASA’s Voyager 2, which flew by the distant planet in the mid-1980s.

Planetary scientists are hoping to change that soon, though. Scientists recommended in a report released last year from the National Academies of Sciences, Engineering, and Medicine that Uranus be the focus on the next big planetary science spacecraft mission. Such a large-scale mission would gain insight into this icy giant planet and the similar solar system planet, Neptune.

A star map on a black backgound showing The Pleiades and Jupiter with Uranus circled in red in between them.
Sky map picturing M45, Uranus and Jupiter
Sky map generated by Stellarium

If you want to catch a view of Uranus with your own eyes, now is prime time to view it. This ice giant planet lies perfectly positioned in mid-November, at so-called “opposition,” when its position in its orbit places it on the other side of the Sun from Earth. That location means our star’s light reflects off Uranus’ icy atmosphere, and the planet appears as its brightest.

A star map showing The Pleiades and Uranus. A red line is linked between showing the distance between the two objects, with Uranus circled in red.
Sky map picturing M45 and Uranus
Sky map generated by Stellarium

To find it, look overhead just after midnight on November 13. Uranus will lie about halfway between the brilliant planet Jupiter and the diffuse glow of the Pleiades star cluster (M45). While Uranus may look like a bright blinking star in the night sky, its blue-green hue gives aways its identity. Binoculars or a telescope will improve the view.

For more about this oddball planet, visit NASA’s Uranus page: https://science.nasa.gov/uranus/facts/
You can find a printer-ready version of this article on our Night Sky Notes resource page every month, free to share with your club newsletter, website, or even local paper!

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Registrations are now open for the European Space Agency’s Living Planet Symposium (LPS) – one of the largest Earth observation conferences in the world. The event will take place on 23–27 June 2025 in Vienna, Austria.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Have we ever been to Uranus?

      The answer is simple, yes, but only once. The Voyager II spacecraft flew by the planet Uranus back in 1986, during a golden era when the Voyager spacecraft explored all four giant planets of our solar system. It revealed an extreme world, a planet that had been bowled over onto its side by some extreme cataclysm early in the formation of the solar system.

      That means that its seasons and its magnetic field get exposed to the most dramatic seasonal variability of any place that we know of in the solar system. The atmosphere was a churning system made of methane and hydrogen and water, with methane clouds showing up as white against the bluer background of the planet itself.
      The densely packed ring system is host to a number of very fine, narrow and dusty rings surrounded by a collection of icy satellites. And those satellites may harbor deep, dark, hidden oceans beneath an icy crust of water ice.

      Taken together, this extreme and exciting system is somewhere that we simply must go back to explore and hopefully in the next one to two decades NASA and the European Space Agency will mount an ambitious mission to go out there and explore the Uranian system. It’s important not just for solar system science, but also for the growing field of exoplanet science. As planets of this particular size, the size of Uranus, about four times wider than planet Earth, seem to be commonplace throughout our galaxy.

      So how have we been to Uranus? Yes, but it’s time that we went back.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 10, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division Planets The Solar System Uranus Explore More
      6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
      Article 1 hour ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 19 hours ago 2 min read NASA’s Planetary Defenders Documentary Premieres April 16
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Have We Been to Uranus? We Asked a NASA Expert
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. Full illustration below. Credits:
      NASA, ESA, CSA, R. Crawford (STScI) Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative surrounding what is believed to be the first star observed in the act of swallowing a planet. The new findings suggest that the star actually did not swell to envelop a planet as previously hypothesized. Instead, Webb’s observations show the planet’s orbit shrank over time, slowly bringing the planet closer to its demise until it was engulfed in full.
      “Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said Ryan Lau, lead author of the new paper and astronomer at NSF NOIRLab (National Science Foundation National Optical-Infrared Astronomy Research Laboratory) in Tuscon, Arizona. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”
      Two instruments aboard Webb conducted the post-mortem of the scene – Webb’s MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph). The researchers were able to come to their conclusion using a two-pronged investigative approach.
      Image A: Planetary Engulfment Illustration
      NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. NASA, ESA, CSA, R. Crawford (STScI) Constraining the How
      The star at the center of this scene is located in the Milky Way galaxy about 12,000 light-years away from Earth.
      The brightening event, formally called ZTF SLRN-2020, was originally spotted as a flash of optical light using the Zwicky Transient Facility at the Palomar Observatory in San Diego, California. Data from NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) showed the star actually brightened in the infrared a year before the optical light flash, hinting at the presence of dust. This initial 2023 investigation led researchers to believe that the star was more Sun-like, and had been in the process of aging into a red giant over hundreds of thousands of years, slowly expanding as it exhausted its hydrogen fuel.
      However, Webb’s MIRI told a different story. With powerful sensitivity and spatial resolution, Webb was able to precisely measure the hidden emission from the star and its immediate surroundings, which lie in a very crowded region of space. The researchers found the star was not as bright as it should have been if it had evolved into a red giant, indicating there was no swelling to engulf the planet as once thought.
      Reconstructing the Scene
      Researchers suggest that, at one point, the planet was about Jupiter-sized, but orbited quite close to the star, even closer than Mercury’s orbit around our Sun. Over millions of years, the planet orbited closer and closer to the star, leading to the catastrophic consequence.
      “The planet eventually started to graze the star’s atmosphere. Then it was a runaway process of falling in faster from that moment,” said team member Morgan MacLeod of the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology in Cambridge, Massachusetts. “The planet, as it’s falling in, started to sort of smear around the star.”
      In its final splashdown, the planet would have blasted gas away from the outer layers of the star. As it expanded and cooled off, the heavy elements in this gas condensed into cold dust over the next year.
      Inspecting the Leftovers
      While the researchers did expect an expanding cloud of cooler dust around the star, a look with the powerful NIRSpec revealed a hot circumstellar disk of molecular gas closer in. Furthermore, Webb’s high spectral resolution was able to detect certain molecules in this accretion disk, including carbon monoxide.
      “With such a transformative telescope like Webb, it was hard for me to have any expectations of what we’d find in the immediate surroundings of the star,” said Colette Salyk of Vassar College in Poughkeepsie, New York, an exoplanet researcher and co-author on the new paper. “I will say, I could not have expected seeing what has the characteristics of a planet-forming region, even though planets are not forming here, in the aftermath of an engulfment.”
      The ability to characterize this gas opens more questions for researchers about what actually happened once the planet was fully swallowed by the star.
      “This is truly the precipice of studying these events. This is the only one we’ve observed in action, and this is the best detection of the aftermath after things have settled back down,” Lau said. “We hope this is just the start of our sample.”
      These observations, taken under Guaranteed Time Observation program 1240, which was specifically designed to investigate a family of mysterious, sudden, infrared brightening events, were among the first Target of Opportunity programs performed by Webb. These types of study are reserved for events, like supernova explosions, that are expected to occur, but researchers don’t exactly know when or where. NASA’s space telescopes are part of a growing, international network that stands ready to witness these fleeting changes, to help us understand how the universe works.
      Researchers expect to add to their sample and identify future events like this using the upcoming Vera C. Rubin Observatory and NASA’s Nancy Grace Roman Space Telescope, which will survey large areas of the sky repeatedly to look for changes over time.
      The team’s findings appear today in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit: https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about Webb’s impact on exoplanet research
      Video: How to Study Exoplanets
      Learn more about exoplanets
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Apr 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. Credits:
      ESA/Hubble, NASA, L. Lamy, L. Sromovsky An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1,000 times greater than previous estimates. By analyzing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille Univ., France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.
      “Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”
      This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky This breakthrough was possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to produce magnetic field models that successfully match the changing position of the magnetic poles with time.
      “The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”
      Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.
      These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.
      These results are based on observations acquired with Hubble programs GO #12601, 13012, 14036, 16313 and DDT #15380 (PI: L. Lamy). The team’s paper was published in Nature Astronomy.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      Uranus Aurorae Image Trio (October 2022)



      Close-up: Uranus Aurorae (October 2022)





      Share








      Details
      Last Updated Apr 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      Astrophysics Communications Manager
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble Chief Science Communications Officer
      Bethany.Downer@esahubble.org
      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science Planets The Solar System Uranus
      Related Links and Downloads
      Science Paper Release ESA’s Website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Studying the Planets and Moons



      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s Beautiful Universe


      View the full article
  • Check out these Videos

×
×
  • Create New...