Jump to content

November’s Night Sky Notes: Spy the Seventh Planet, Uranus


Recommended Posts

  • Publishers
Posted

3 min read

November’s Night Sky Notes: Spy the Seventh Planet, Uranus

uranusmain.png?w=1268
Look out, Saturn! The competition for the best ringed planet is getting larger. This new image of Uranus from NASA Webb displays a prominent ring system. Also in view: a white polar cap at the right side of the planet, and two bright spots likely connected to storm activity. How can the polar cap be on the right, and not the top or bottom? It’s because Uranus rotates at a nearly 90-degree angle from the plane of its orbit. This tilt makes Uranus appear to spin on its side.
NASA, ESA, CSA, STScI, Joseph DePasquale (STScI)

by Liz Kruesi of the Astronomical Society of the Pacific

You might be familiar with Saturn as the solar system’s ringed planet, with its enormous amount of dust and ice bits circling the giant planet. But Uranus, the next planet out from the Sun hosts an impressive ring system as well. The seventh planet was the first discovered telescopically instead of with unaided eyes, and it was astronomer extraordinaire William Herschel who discovered Uranus March 13, 1781. Nearly two centuries passed before an infrared telescope aboard a military cargo aircraft revealed the planet had rings in 1977.

Since that discovery, multiple observatories have revealed more details of Uranus and its ring system. Most recently, the NASA-led JWST space observatory captured the planet and its rings in detail. This recent image combines just 12 minutes of exposure in two filters to reveal 11 of the planet’s 13 rings. Even some of the planet’s atmospheric features are visible in this image. Even with advanced imaging like that from JWST, much of Uranus remains a mystery, including why it orbits the Sun on its side. This is because only one spacecraft has ever visited this planet: NASA’s Voyager 2, which flew by the distant planet in the mid-1980s.

Planetary scientists are hoping to change that soon, though. Scientists recommended in a report released last year from the National Academies of Sciences, Engineering, and Medicine that Uranus be the focus on the next big planetary science spacecraft mission. Such a large-scale mission would gain insight into this icy giant planet and the similar solar system planet, Neptune.

A star map on a black backgound showing The Pleiades and Jupiter with Uranus circled in red in between them.
Sky map picturing M45, Uranus and Jupiter
Sky map generated by Stellarium

If you want to catch a view of Uranus with your own eyes, now is prime time to view it. This ice giant planet lies perfectly positioned in mid-November, at so-called “opposition,” when its position in its orbit places it on the other side of the Sun from Earth. That location means our star’s light reflects off Uranus’ icy atmosphere, and the planet appears as its brightest.

A star map showing The Pleiades and Uranus. A red line is linked between showing the distance between the two objects, with Uranus circled in red.
Sky map picturing M45 and Uranus
Sky map generated by Stellarium

To find it, look overhead just after midnight on November 13. Uranus will lie about halfway between the brilliant planet Jupiter and the diffuse glow of the Pleiades star cluster (M45). While Uranus may look like a bright blinking star in the night sky, its blue-green hue gives aways its identity. Binoculars or a telescope will improve the view.

For more about this oddball planet, visit NASA’s Uranus page: https://science.nasa.gov/uranus/facts/
You can find a printer-ready version of this article on our Night Sky Notes resource page every month, free to share with your club newsletter, website, or even local paper!

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Webb, NASA & CSA, P. Zeidler This new image of star cluster NGC 602, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory with a previously released image from the agency’s James Webb Space Telescope. Webb data provide the ring-like outline of the “wreath,” while X-rays from Chandra (red) show young, massive stars that are illuminating the wreath, sending high-energy light into interstellar space.
      NGC 602 lies on the outskirts of the Small Magellanic Cloud, which is one of the closest galaxies to the Milky Way, about 200,000 light-years from Earth. 
      See another new, festive image: the “Christmas tree cluster.”
      Image credit: X-ray: NASA/CXC; Infrared: ESA/Webb, NASA & CSA, P. Zeilder, E.Sabbi, A. Nota, M. Zamani; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand
      View the full article
    • By NASA
      4 Min Read Celebrating 20 Years: Night Sky Network
      2023 Partial Solar Eclipse Viewing at Camino Real Marketplace with the View the Santa Barbara Astronomical Unit. Credits:
      Photo by Chuck McPartlin by Vivan White & Kat Troche of the Astronomical Society of the Pacific
      NASA’s Night Sky Network is one of the most successful and longstanding grassroots initiatives for public engagement in astronomy education. Started in 2004 with the PlanetQuest program out of the Jet Propulsion Laboratory and currently supported by NASA’s Science Activation, the Night Sky Network (NSN) plays a critical role in fostering science literacy through astronomy. By connecting NASA science and missions to support amateur astronomy clubs, NSN leverages the expertise and enthusiasm of club members, who bring this knowledge to schools, museums, observatories, and other organizations, bridging the gap between NASA science and the public. Now in its 20th year, NSN supports over 400 astronomy clubs dedicated to bringing the wonder of the night sky to their communities across the US, connecting with 7.4 million people across the United States and its territories since its inception.
      International Observe the Moon Night, September 2024 Credit: Oklahoma City Astronomy Club Humble Beginnings
      It all started with an idea – astronomy clubs already do great outreach, and club members know a lot of astronomy (shown definitively by founder Marni Berendsen’s research), and they love to talk with the public – how could NASA support these astronomy clubs in sharing current research and ideas using informal activities designed for use in the places that amateur astronomers do outreach.  Thanks to funding through NASA JPL’s PlanetQuest public engagement program, the Night Sky Network was born in 2004, with more than 100 clubs joining the first year.
      Raynham Public Observing Night, February 2004 Credit: Astronomical Society of Southern New England/Mark Gibson As quoted from the first NSN news article, “NASA is very excited to be working closely with the amateur astronomy community,” said Michael Greene, current Director for Communications and Education and former head of public engagement for JPL’s Navigator Program and PlanetQuest initiatives, “Amateurs want more people to look at the sky and understand astronomy, and so do we. Connecting what we do with our missions to the sense of wonder that comes when you look up at the stars and the planets is one of our long-term objectives. We have a strong commitment to inspiring the next generation of explorers. Lending support to the energy that the amateur astronomy community brings to students and the public will allow NASA to reach many more people.”
      Taking off like a rocket, Night Sky Network had over 100 clubs registered on their website within the first year.
      The Toolkits
      Outreach Toolkits were developed to assist clubs with their endeavors. These kits included educational materials, hands-on activities, and guides to explaining topics in an accessible way. So far, 13 toolkits have been created with topics ranging from the scale of the universe to how telescopes work. To qualify for these free Toolkits, clubs must be active in their communities, hosting two outreach events every three months or five outreach events within a calendar year. Supplemental toolkits were also created based on special events, such as the solar eclipses and the 50th anniversary of Apollo’s Moon landing. A new toolkit is in development to teach audiences about solar science, and NSN is on track to support clubs well into the future.
      Rye Science Day, October 2014 Credit: Southern Colorado Astronomical Society/Malissa Pacheco NSN also hosts archived video trainings on these toolkits and other topics via its YouTube channel and a monthly webinar series with scientists from various institutions worldwide. Lastly, a monthly segment called Night Sky Notes is produced for clubs to share with their audiences via newsletters and mailing lists.
      Sharing the Universe
      In 2007, a National Science Foundation grant provided funding for further research into astronomy club needs. From that came three resources for clubs – the Growing Your Astronomy Club and Getting Started with Outreach video series, as well as an updated website with a national calendar and club and event coordination. Now you can find hundreds of events each month across the country, including virtual events that you can join from anywhere.
      Night Sky Network: Current and Future
      Map of Night Sky Network clubs within the United States, as of November 2024 Credit: Night Sky Network/Google Maps View the full article
    • By European Space Agency
      Our understanding of planet formation in the Universe’s early days is challenged by new data from the NASA/ESA/CSA James Webb Space Telescope. Webb solved a puzzle by proving a controversial finding made with the NASA/ESA Hubble Space Telescope more than 20 years ago.
      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 7 Min Read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. Credits:
      NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made with the agency’s Hubble Space Telescope more than 20 years ago.
      In 2003, Hubble provided evidence of a massive planet around a very old star, almost as old as the universe. Such stars possess only small amounts of heavier elements that are the building blocks of planets. This implied that some planet formation happened when our universe was very young, and those planets had time to form and grow big inside their primordial disks, even bigger than Jupiter. But how? This was puzzling.
      To answer this question, researchers used Webb to study stars in a nearby galaxy that, much like the early universe, lacks large amounts of heavy elements. They found that not only do some stars there have planet-forming disks, but that those disks are longer-lived than those seen around young stars in our Milky Way galaxy.
      “With Webb, we have a really strong confirmation of what we saw with Hubble, and we must rethink how we model planet formation and early evolution in the young universe,” said study leader Guido De Marchi of the European Space Research and Technology Centre in Noordwijk, Netherlands.
      Image A: Protoplanetary Disks in NGC 346 (NIRCam Image)
      This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. With its relative lack of elements heavier than hydrogen and helium, the NGC 346 cluster serves as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe. Ten, small, yellow circles overlaid on the image indicate the positions of the ten stars surveyed in this study. NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) A Different Environment in Early Times
      In the early universe, stars formed from mostly hydrogen and helium, and very few heavier elements such as carbon and iron, which came later through supernova explosions.
      “Current models predict that with so few heavier elements, the disks around stars have a short lifetime, so short in fact that planets cannot grow big,” said the Webb study’s co-investigator Elena Sabbi, chief scientist for Gemini Observatory at the National Science Foundation’s NOIRLab in Tucson. “But Hubble did see those planets, so what if the models were not correct and disks could live longer?”
      To test this idea, scientists trained Webb on the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. In particular, they examined the massive, star-forming cluster NGC 346, which also has a relative lack of heavier elements. The cluster served as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe.
      Hubble observations of NGC 346 from the mid 2000s revealed many stars about 20 to 30 million years old that seemed to still have planet-forming disks around them. This went against the conventional belief that such disks would dissipate after 2 or 3 million years.
      “The Hubble findings were controversial, going against not only empirical evidence in our galaxy but also against the current models,” said De Marchi. “This was intriguing, but without a way to obtain spectra of those stars, we could not really establish whether we were witnessing genuine accretion and the presence of disks, or just some artificial effects.”
      Now, thanks to Webb’s sensitivity and resolution, scientists have the first-ever spectra of forming, Sun-like stars and their immediate environments in a nearby galaxy.
      “We see that these stars are indeed surrounded by disks and are still in the process of gobbling material, even at the relatively old age of 20 or 30 million years,” said De Marchi. “This also implies that planets have more time to form and grow around these stars than in nearby star-forming regions in our own galaxy.”
      Image B: Protoplanetary Disks in NGC 346 Spectra (NIRSpec)
      This graph shows, on the bottom left in yellow, a spectrum of one of the 10 target stars in this study (as well as accompanying light from the immediate background environment). Spectral fingerprints of hot atomic helium, cold molecular hydrogen, and hot atomic hydrogen are highlighted. On the top left in magenta is a spectrum slightly offset from the star that includes only light from the background environment. This second spectrum lacks a spectral line of cold molecular hydrogen.
      On the right is the comparison of the top and bottom lines. This comparison shows a large peak in the cold molecular hydrogen coming from the star but not its nebular environment. Also, atomic hydrogen shows a larger peak from the star. This indicates the presence of a protoplanetary disk immediately surrounding the star. The data was taken with the microshutter array on the James Webb Space Telescope’s NIRSpec (Near-Infrared Spectrometer) instrument. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A New Way of Thinking
      This finding refutes previous theoretical predictions that when there are very few heavier elements in the gas around the disk, the star would very quickly blow away the disk. So the disk’s life would be very short, even less than a million years. But if a disk doesn’t stay around the star long enough for the dust grains to stick together and pebbles to form and become the core of a planet, how can planets form?
      The researchers explained that there could be two distinct mechanisms, or even a combination, for planet-forming disks to persist in environments scarce in heavier elements.
      First, to be able to blow away the disk, the star applies radiation pressure. For this pressure to be effective, elements heavier than hydrogen and helium would have to reside in the gas. But the massive star cluster NGC 346 only has about ten percent of the heavier elements that are present in the chemical composition of our Sun. Perhaps it simply takes longer for a star in this cluster to disperse its disk.
      The second possibility is that, for a Sun-like star to form when there are few heavier elements, it would have to start from a larger cloud of gas. A bigger gas cloud will produce a bigger disk. So there is more mass in the disk and therefore it would take longer to blow the disk away, even if the radiation pressure were working in the same way.
      “With more matter around the stars, the accretion lasts for a longer time,” said Sabbi. “The disks take ten times longer to disappear. This has implications for how you form a planet, and the type of system architecture that you can have in these different environments. This is so exciting.”
      The science team’s paper appears in the Dec. 16 issue of The Astrophysical Journal.
      Image C: NGC 346: Hubble and Webb Observations
      Image Before/After The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt manages the telescope and mission operations. Lockheed Martin Space, based in Denver also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Past releases on NGC 346: Webb NIRCam image and MIRI image
      Article: Highlighting other Webb Star Formation Discoveries
      Simulation Video: Planetary Systems and Origins of Life
      Animation Video: Exploring star and planet formation (English), and in Spanish
      More Images of NGC 346 on AstroPix
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a planet?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es un planeta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Dec 15, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Stars The Universe View the full article
    • By Amazing Space
      'Twas the Night Before Christmas: A Star Trek TNG Holiday Special 🎄🖖
  • Check out these Videos

×
×
  • Create New...