Jump to content

JPL Engineers Put Their Skills to the Test With Halloween Pumpkins


Recommended Posts

  • Publishers
Posted

3 min read

JPL Engineers Put Their Skills to the Test With Halloween Pumpkins

Pumpkin carving reaches new heights during the annual competition, where spacecraft-building engineers mix ingenuity and creativity for some spectacular results.

When mechanical engineers accustomed to building one-of-a-kind spacecraft turn that focus to pumpkins, the results can be hauntingly good. The annual Halloween pumpkin-carving contest at NASA’s Jet Propulsion Laboratory in Southern California may be all in good fun, but to the 200 or so participants, it’s also serious business. Power tools are involved.

JPL employee with a pumpkin carved guitar
Pumpkins can even be turned into musical instruments during JPL’s annual pumpkin-carving contest.
Credit: NASA/JPL-Caltech

Dioramas can incorporate flying-saucer gourds, guitar-strumming pumpkins, and squashes that bear a striking resemblance to celebrities or famous deep space missions. Participants carve them on their breaks – 60 minutes of frantic sawing and drilling that sends vegetable detritus flying on a patio at JPL. (This year, one team had a minute-by-minute spreadsheet to make sure they stayed on schedule.)

Carving complete, engineers race into two conference rooms in a nearby building to install the pumpkins into displays of up to 4 feet by 4 feet square. Non-pumpkin materials – motorized parts, lights, often elaborate props, and painted backdrops – can be prepared beforehand.

“It’s not really a pumpkin-carving contest in the traditional sense. It’s a pumpkin art installation event with very few rules,” said Peter Waydo, who manages JPL’s spacecraft mechanical engineering section and emcees the carving. He’s been participating since the event began in 2011. “This is something everybody looks forward to every year – it just lets their creative juices flow completely unrestricted from the rules and processes we’re normally bound by.”

For the 2023 event, more than two dozen teams produced displays. They ranged from a Barbenheimer-themed “atomic makeover” featuring a mirrored disco-ball pumpkin to a space octopus emerging from a Jupiter-colored pumpkin to greet NASA’s Europa Clipper spacecraft, and there were references to Taylor Swift, “Dune,” and the agency’s James Webb Space Telescope. All of the creations were on display for fellow engineers, scientists, technicians, and other JPL employees to admire.

Of course, it wouldn’t be a competition without winners. A panel of judges named the year’s top six, with three from each of the two sections of engineers that participate. A display re-creating favorite items from JPL’s museum and an interactive Indiana Jones-themed display both won first. Second went to the Deep Squash Network – a spoof on NASA’s Deep Space Network, which enables spacecraft to communicate with Earth – and to a creation involving a descendent of NASA’s Ingenuity Mars Helicopter on the fictional planet Arrakis. The two third-place winners were an eyeball-pumpkin that resembled Las Vegas’ Sphere and the Barbenheimer display.

The event comes on a special day for the lab, which, founded Oct. 31, 1936, was celebrating its 87th birthday.

Additional photos from the pumpkin competition are available on JPL’s website.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

Share

Details

Last Updated
Oct 31, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford Venturi Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle – three commercially owned and developed LTVs (Lunar Terrain Vehicle) – are pictured at NASA’s Johnson Space Center in Houston in this photo from Nov. 21, 2024.
      As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
      See how these LTVs were tested.
      Image credit: NASA/Bill Stafford
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
      The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
      “It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
      Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
      A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
      The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
      NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
      The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
      The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
      The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
      “This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.

      Share
      Details
      Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      Michelle Dominguez proudly displays her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024.NASA Dorcas Kaweesa holding her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024. NASA In October 2024, Michelle Dominguez and Dorcas Kaweesa from the Ames Aeromechanics Office were each awarded as a “Technology Rising Star” at the Women of Color STEM Conference in Detroit, Michigan.  Rising Star awards are for “young women, with 21 years or less in the workforce, who are helping to shape technology for the future.”  Ms. Dominguez is a Mechanical Systems Engineer working on rotorcraft design for vertical-lift vehicles such as air taxis and Mars helicopters.  Dr. Kaweesa is a Structural Analysis Engineer and Deputy Manager for planetary rotorcraft initiatives including Mars Exploration Program and Mars Sample Return.  More information on this award is at https://intouch.ccgmag.com/mpage/woc-stem-conference-awardees .
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Steve Parcel The most effective way to prove a new idea is to start small, test, learn, and test again. A team of researchers developing an atmospheric probe at NASA’s Armstrong Flight Research Center in Edwards, California, are taking that approach. The concept could offer future scientists a potentially better and more economical way to collect data on other planets.
      The latest iteration of the atmospheric probe flew after release from a quad-rotor remotely piloted aircraft on Oct. 22 above Rogers Dry Lake, a flight area adjacent to NASA Armstrong. The probe benefits from NASA 1960s research on lifting body aircraft, which use the aircraft’s shape for lift instead of wings. Testing demonstrated the shape of the probe works.
      “I’m ecstatic,” said John Bodylski, atmospheric probe principal investigator at NASA Armstrong. “It was completely stable in flight. We will be looking at releasing it from a higher altitude to keep it flying longer and demonstrate more maneuvers.”
      An atmospheric probe model attached upside down to a quad rotor remotely piloted aircraft ascends with the Moon visible on Oct. 22, 2024. The quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Starting with a Center Innovation Fund award in 2023, Bodylski worked closely with the center’s Dale Reed Subscale Flight Research Laboratory to design and build three atmospheric probe models, each vehicle 28 inches long from nose to tail. One model is a visual to show what the concept looks like, while two additional prototypes improved the technology’s readiness.
      The road to the successful flight wasn’t smooth, which is expected with any new flight idea. The first flight on Aug. 1 didn’t go as planned. The release mechanism didn’t work as expected and air movement from the quad rotor aircraft was greater than anticipated. It was that failure that inspired the research team to take another look at everything about the vehicle, leading to many improvements, said Justin Hall, NASA Armstrong chief pilot of small, unmanned aircraft systems.
      Fast forward to Oct. 22, where the redesign of the release mechanism, in addition to an upside-down release and modified flight control surfaces, led to a stable and level flight. “Everything we learned from the first vehicle failing and integrating what we learned into this one seemed to work well,” Hall said. “This is a win for us. We have a good place to go from here and there’s some more changes we can make to improve it.”
      Justin Link, left, small unmanned aircraft systems pilot; John Bodylski, atmospheric probe principal investigator; and Justin Hall, chief pilot of small unmanned aircraft systems, discuss details of the atmospheric probe flight plan on Oct. 22, 2024. A quad rotor remotely piloted aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Bodylski added, “We are going to focus on getting the aircraft to pull up sooner to give us more flight time to learn more about the prototype. We will go to a higher altitude [this flight started at 560 feet altitude] on the next flight because we are not worried about the aircraft’s stability.”
      When the team reviewed flight photos and video from the Oct. 22 flight they identified additional areas for improvement. Another atmospheric probe will be built with enhancements and flown. Following another successful flight, the team plans to instrument a future atmospheric probe that will gather data and improve computer models. Data gathering is the main goal for the current flights to give scientists confidence in additional probe shapes for atmospheric missions on other planets.
      If this concept is eventually chosen for a mission, it would ride on a satellite to its destination. From there, the probe would separate as the parent satellite orbits around a planet, then enter and dive through the atmosphere as it gathers information for clues of how the solar system formed.
      Justin Hall, chief pilot of small unmanned aircraft systems, prepares the atmospheric probe for flight above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. At right, Justin Link, small unmanned aircraft systems pilot, assists. The probe, designed and built at the center, flew after release from a quad rotor remotely piloted aircraft on Oct. 22, 2024.NASA/Steve Freeman Derek Abramson, left, chief engineer for the Dale Reed Subscale Flight Research Laboratory, and Justin Link, small unmanned aircraft system pilot, carry the atmospheric probe model and a quad rotor remotely piloted aircraft to position it for flight on Oct. 24, 2024. John Bodylski, probe principal investigator, right, and videographer Jacob Shaw watch the preparations. Once at altitude, the quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent to NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman A quad rotor remotely piloted aircraft releases the atmospheric probe model above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 22, 2024. The probe was designed and built at the center.NASA/Carla Thomas Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Armstrong Flight Research Center Aeronautics Center Innovation Fund Flight Innovation Space Technology Mission Directorate Explore More
      3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
      Article 24 hours ago 1 min read NASA TechLeap Prize: Space Technology Payload Challenge
      Article 1 day ago 1 min read 3D Printable Bioreactor for Deep Space Food Production
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Capabilities & Facilities
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      Members belonging to one of three teams from Oakwood School aim their devices — armed with chocolate-coated-peanut candies — at a target during JPL’s annual Invention Challenge on Dec. 6.NASA/JPL-Caltech Teams competed with homemade devices to try to launch 50 peanut candies in 60 seconds into a target container.NASA/JPL-Caltech More points were awarded for successfully landing the candy into the highest, smallest level of the triangular Plexiglas target — not an easy task.NASA/JPL-Caltech Treats went flying through the air by the dozens at the annual Invention Challenge at NASA’s Jet Propulsion Laboratory.
      The 25th Invention Challenge at NASA’s Jet Propulsion Laboratory in Southern California, which welcomed more than 200 students to compete using home-built devices, was pretty sweet this year. Literally.
      That’s because the challenge at the Friday, Dec. 6, competition was to construct an automated machine that would launch, within 60 seconds, 50 chocolate-coated-peanut candies over a barrier and into a triangular Plexiglas container 16 feet (5 meters) away. The mood was tense as teachers, parents, and JPL employees watched the “Peanut Candy Toss Contest” from the sidelines, some of them eating the ammunition.
      Students on 21 teams from Los Angeles and Orange county middle and high schools turned to catapults, slingshots, flywheels, springs, and massive rubber bands. There was lots of PVC piping. A giant device shaped like a blue bunny shot candy out of its nose with the help of an air compressor, while other entries relied on leaf blowers and vacuums.
      A team from Santa Monica High School won the 2024 Invention Challenge at JPL on Dec. 6 with a device was based on a crossbow.NASA/JPL-Caltech Some were more successful than others. Ultimately, it was an old-school design that won first place for a team from Santa Monica High School: a modified crossbow.
      “I tried to come up with something that was historically tried and true,” said Steele Winterer, a senior on the team who produced the initial design. Like his teammates, Steele is in the school’s engineering program and helped build the device during class. He described the process as “nerve-wracking,” “messy,” and “disorganized,” but everyone found their role as the design was refined.
      Second and third place went to teams from Oakwood School in North Hollywood, which both took a firing-line approach, using four parallel wooden devices, with one student per device firing after each other in quick succession.
      Two regional Invention Challenges held at Costa Mesa High School and Augustus Hawkins High School in South L.A. last month had winnowed the field to the 21 teams invited to the final event at JPL. At the finals, three JPL-sponsored teams from out-of-state schools and two teams that included adult engineers faced off in a parallel competition. In this second competition group, retired JPL engineer Alan DeVault took first place, followed by Boston Charter School of Science coming in second, and Centaurus High School from Colorado in third.
      Competing with a wooden device at the 2024 Invention Challenge, retired JPL engineer and longtime participant Alan DeVault won first place among JPL-sponsored teams, which included professionals and out-of-state students. Challenge organizer Paul MacNeal kneels at right.NASA/JPL-Caltech Held since 1998 (with a two-year break during the COVID-19 pandemic), the contest was designed by JPL mechanical engineer Paul MacNeal to inspire students to discover a love for building things and solving problems. Student teams spend months designing, constructing, and testing their devices to try to win the new challenge that MacNeal comes up with each year.
      “When student teams come to the finals, they are engaged just as engineers are engaged in the work we do here at JPL,” MacNeal said. “It’s engineering for the joy of it. It’s problem-solving but it’s also team building. And it’s unique because the rules change every year. The student teams get to see JPL engineering teams compete side by side. I started this contest to show students that engineering is fun!”
      The event is supported by dozens of volunteers from JPL, which is managed by Caltech in Pasadena for NASA.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-166
      Share
      Details
      Last Updated Dec 06, 2024 Related Terms
      Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events
      Article 2 days ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...