Jump to content

InSPA Inter-Agency Collaboration Goals


Recommended Posts

  • Publishers
Posted
Robotic hand reaching out to touch a human's hand wearing a spacesuit glove
High quality production photos of Robonaut (R2) in Building 14 EMI chamber and R1/EMU photos in Building 32 – Robonaut Lab. Photo Date: June 1, 2010. Location: Building 14 – EMI Chamber/Building 32 – Robonaut Lab.
NASA / Robert Markowitz & Bill Stafford

NASA knows it takes a village to make commercial manufacturing in space a reality. NASA is collaborating with experts from industry, academia and other U.S. Government agencies on the technologies in play with the InSPA portfolio.  By joining forces with these experts, NASA can better support its commercial partners, accelerating the transition from proof-of-concept demonstrations on the International Space Station to commercial operations in future commercial low Earth orbit (LEO) destinations. NASA’s InSPA awards help the selected companies raise the technological readiness level of their products and move them to market, propelling U.S. industry toward the development of a sustainable, scalable, and profitable non-NASA demand for services and products manufactured in the microgravity environment of LEO for use on Earth.

NASA is recruiting agency, government and industry experts to inform NASA’s InSPA priorities, accelerate learning and increase commercialization success.

Establishing Priorities

We will provide input on NASA Technology Roadmaps and/or evaluate proposals to inform awards for applications that serve national needs and U.S. competitiveness. We will also participate in working group discussions.

CHIPS and Science Act

Concepts that support the goals of the “CHIPS and Science Act” through semiconductor manufacturing in microgravity are of special interest to NASA. Those selected for further assessment will be invited to submit full proposals. NASA is seeking funding from the CHIPS and Science Act through the National Institute of Standards and Technology (NIST) to ensure US leadership in semiconductor manufacturing in microgravity. To support this initiative, NASA’s InSPA program may grant awards that come with funding for facilities, workforce development, academic support, and program development.

SHERPA Support

Space Hardware Experts for Research, Production, and Applications (SHERPA) shares knowledge as subject matter experts on science, technology, manufacturing, markets, and investors. Provide support directly to principal investigators or through NASA Technical Monitors to accelerate learning.

Specific SHERPA activities:

  • Identify new InSPA candidates important to other government agencies where gravity is impeding development.
  • Assist in prioritization and decisions on down-selects.
  • Peer review at major milestones (design reviews, science requirements, ground and in-flight testing).
  • Develop performance goals and metrics that must be met to exceed current state-of-the-art.
  • Leverage artificial intelligence and machine learning (AI/ML) and expand space databases to improve models and increase value from each flight, across the years and programs.
  • Perform independent analysis and validation of flight results.
  • Conduct outreach to industry and other government agencies for Phase 2 and 3 sponsorships.

Points of Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has a strong need for advanced materials and processes (M&P) across the realms of robotic- and crewed-spaceflight, as well as aeronautics, particularly when one acknowledges that all craft must be made of something. To meet that need, the materials discipline relies on collaboration—both between centers and across disciplines. Reaching the Agency’s Moon-to-Mars objectives will require leveraging each center’s specific M&P expertise, cross-training among the centers, and routinely interacting with the 20-plus Agency disciplines like structures, space environments, and loads and dynamics. When a discipline touches all classes of materials; all aspects of design, manufacturing, testing, and operations; and all phases of flight, collaboration is the only way to broaden and deepen its reach.

      This year, the Materials TDT pulled in wide-ranging center and discipline support for the VIPER lunar rover, investigations of cracks in the ISS Russian PrK, the X-59 supersonic aircraft, and the SLS Program. It also leveraged its contamination control experience to aid the Commercial Crew and Orion Programs. Below are some additional highlights from the year.

      Collaboration Among Disciplines
      Ms. Alison Park, NASA Deputy Technical Fellow for Materials, led a multi-disciplinary NESC team to address JPL’s request for sup – port to investigate anomalous temperature readings during thermal vacuum testing of the NASA Indian Space Research Organization (ISRO) Synthetic Aperture Rader (NISAR) reflect-array hardware, already integrated onto the spacecraft in India. The team provided detailed reviews of the thermal models and supported materials testing and characterization of the reflect-array construction record. The team’s work identified operability concerns from higher than expected temperatures that would be seen during the multi-day deployment process. The hardware was demated from the space – craft and returned to the United States for design upgrades and modifications to address the new concerns. The hardware is now set to return to India for reintegration and final launch preparations.

      Fostering Intercenter Cooperation
      Mr. Robert Carter, NASA Deputy Technical Fellow for Materials and GRC Deputy Division Chief, attended a technical exchange between GRC and MSFC. The exchange uncovered the need for an Agency-wide, materials-driven alloy development plan to identify key needs that would benefit spaceflight and aeronautics. From there, materials representatives from 7 of the 10 centers met in-person to develop a roadmap and a plan to be released in FY25. The Materials TDT also stood up an Alloy Development Community of Practice to provide a grassroots mechanism to identify cross-Agency needs, technical challenges, and benefits that aren’t identified programmatically or within mission directorates.
      Illustration depicting the NISAR satellite in orbit over central and Northern California. The satellite features an advanced radar system to globally monitor changes to Earth’s land and ice surfaces to deepen scientists’ understanding of natural hazards, land use, climate change, and other global processes. In June 2023, NISAR’s radar instrument payload and spacecraft bus were combined in an ISRO clean room facility in Bengaluru, India. Image credit: VDOS-URSC Leveraging NASA Partnerships
      The NASA Technical Fellow for Materials, Dr. Bryan W. McEnerney, hosted visitors from the European Space Agency (ESA) for a combined trip to JPL, GRC, and KSC, as well as the jointly organized Worldwide Advanced Manufacturing Symposium (WAMS) in Orlando, FL. In-depth technical interchanges between NASA and ESA emphasized advanced manufacturing with a focus on spaceflight needs. The event increased technical collaboration be – tween the two organizations, leading to ESA’s request to NASA for a formal review of ESA’s stress corrosion standard. Work was also initiated on a joint NASA/ESA intern program. Next year brings a number of new and exciting challenges, including an elevated temperature testing program focused on HallPetch effects in C-103 (niobium alloy), the domestic North American WAMS symposium in Knoxville, TN, and a continued focus on intercenter technical support. And, always a key objective, the discipline will actively engage early-career personnel on NESC assessments to learn from our veteran materials experts and to pass on the knowledge so unique to the space industry.

      Alloy Development community of practice participants. Robert Carter is at center.View the full article
    • By NASA
      Northrop Grumman & NASA Digital Engineering SAA Kick-off meeting at Thompson Space Innovation Center.  NASA’s Digital Engineering is paving the way for exciting new possibilities. Their latest Space Act Agreement with Northrop Grumman promises to accelerate progress in space exploration through innovative collaboration.
      Under NASA’s HQ Office of the Chief Engineer, Terry Hill the Digital Engineering Program Manager, recently signed a Space Act Agreement with Northrop Grumman Space Sector to explore digital engineering approaches to sharing information between industry partners and NASA. This collaboration aims to support NASA’s mission by advancing engineering practices to reduce the time from concept to flight. By leveraging digital engineering tools, this collaboration could lead to improved design, testing, and simulation processes, It could also help improve how the government and industry write contracts, making it easier and more efficient for them to share information. This would help both sides work together better, handle more complicated missions, and speed up the development of new space technologies.
      This collaboration between NASA and Northrop Grumman brings exciting possibilities for the future of space exploration. By embracing digital engineering, both organizations are working toward more efficient, cost-effective missions and solutions to greater challenges. Beyond accelerating mission timelines, the insights and technologies developed through this collaboration could pave the way for groundbreaking advancements in space capabilities.
      View the full article
    • By Space Force
      Three finalists from the Generative AI Challenge that will present their generative AI solutions and compete for first place at this year’s Space Power Conference.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      By Wayne Smith
      As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.
      Scientists and engineers from NASA’s Marshall Space Flight Center, participating in the laser beam welding study in August, stand in front of the parabolic plane used for testing. From left, Will Evans, Louise Littles, Emma Jaynes, Andrew O’Connor, and Jeffrey Sowards. Not pictured: Zachary Courtright.Casey Coughlin/Starlab-George Washington Carver Science Park The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity’s next giant leap of sending astronauts to Mars and beyond.
      “For a long time, we’ve used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space,” said Andrew O’Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA’s technical lead for the project. “But we’re starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding.” The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.
      To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.
      “Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we’re still on the ground,” said O’Connor.
      In August 2024, a joint team from Ohio State’s Welding Engineering and Multidisciplinary Capstone Programs and Marshall’s Materials & Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.
      While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.
      NASA Marshall engineers and scientists, along with their collaborators from Ohio State University, monitor laser beam welding in a vacuum chamber during a Boeing 727 parabolic flight. From left, Andrew O’Connor, Marshall materials scientist and NASA technical lead for the project; Louise Littles, Marshall materials scientist; and Aaron Brimmer, OSU graduate student.Tasha Dixon/Zero-G “During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign,” said Will McAuley, an Ohio State welding engineering student.
      Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA’s Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.
      The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.
      The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.
      “We’re really excited about laser beam welding because it gives us the flexibility to operate in different environments,” O’Connor said.
      There has been a resurgence of interest in welding as we look for innovative ways to put larger structures on the surface of the Moon and other planets.
      Andrew O’Connor
      Marshall Space Flight Center materials scientist
      This effort is sponsored by NASA Marshall’s Research and Development funds, the agency’s Science Mission Directorate Biological and Physical Sciences Division of the agency’s Science Mission Directorate, and NASA’s Space Technology Mission Directorate, including NASA Flight Opportunities.
      For more information about NASA’s Marshall Space Flight Center, visit:
      https://www.nasa.gov/marshall
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Alabama
      256.544.0034
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 Related Terms
      Marshall Space Flight Center Explore More
      5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 3 days ago 23 min read The Marshall Star for October 30, 2024
      Article 1 week ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
      The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse.
      For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region.
      The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA.
      GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse
      Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share








      Details
      Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More
      5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute


      Article


      3 days ago
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      4 days ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...