Jump to content

In Space Production: Applications Within Reach


NASA

Recommended Posts

  • Publishers
diagram showing differences of crystal growth in Earth's gravity versus microgravity
In microgravity, crystals grow more slowly, but the molecules have time to align more perfectly on the surface of the crystal, which returns much better research outcomes.
NASA

After four decades of microgravity research, NASA and the ISS National Lab have identified numerous applications that are within reach for NASA’s In Space Production Applications (InSPA) portfolio. Uniform crystals, semiconductors, specialized glass and optical fibers are just a few of the many advanced materials that can benefit from production in microgravity. Artificial retinas, drug delivery medical devices, as well as the production of pluripotent stem cells and bio inks are examples of how microgravity can stimulate the medical and bioscience industries. The most promising may be the production of small molecule crystalline proteins for pharmaceutical therapies. NASA’s InSPA objective is to enable sustainable, scalable, and profitable non-NASA demand for services and products manufactured in the microgravity environment of low-Earth orbit for use on Earth.

Applications of Special Interest

InSPA supports the goals of the White House’s “Cancer Moonshot” by seeking new applications that will accelerate the rate of progress against cancer. These projects are of special interest and may include manufacturing of compounds or therapeutics to address oncology applications on Earth.

InSPA also supports the CHIPS and Science Act of 2022, which provides the Department of Commerce with $50 billion for a suite of programs strengthen and revitalize the U.S. position in semiconductor research, development, and manufacturing. InSPA projects centered around semiconductor manufacturing are of special interest and can ensure United States leadership in semiconductor production. (Source: https://www.nist.gov/chips)

InSPA awards fall into two categories, Advanced Materials and Tissue Engineering and Biomanufacturing.

Advanced Materials

Advanced Materials use microgravity phenomena singly and in combination to produce a growing range of new products. For example:

  • Removing sedimentation and buoyancy enables unique alloys and compositions.
  • Surface tension processes can eliminate voids and ensure continuous contact between dissimilar materials.
  • Lack of convection provides quiescent environments that can remove or minimize defects.

Crystal Production in microgravity has numerous applications in drug development, testing, and delivery, as well as semiconductors and inorganic frameworks. For example, crystals have the following properties in microgravity:

  • They grow more slowly, enabling optical fiber manufacturing that suppresses crystallization defects.
  • They grow in a more uniform manner that can better inform and enable better quality protein-based therapeutics.
  • They grow larger and more perfect enabling exceptional quality industrial crystals and macromolecular structures.
microscopic image of crystals grown in microgravity
A 2x-magnification of protein crystals grown during RTPCG-1, using
techniques to be used in RTPCG-2.
NASA

Thin Layer Deposition in microgravity has applications in layering for medical devices, semiconductors, and ceramic coatings. For example:

  • Absence of sedimentation and buoyancy allow surface tension effects to dominate, resulting in more uniform and atomically and molecularly precise layering for artificial retinas and other devices.

Tissue Engineering and Biomanufacturing

In microgravity, tissues can be formed in three dimensions without supporting architecture, and living matter adapts to microgravity through a variety of mechanisms that can be used to model cellular dysfunction, which occurs on Earth. For example:

  • Gravity constrains tissue engineering on Earth by flattening and deforming 3D tissue constructs.
  • Microgravity allows larger tissues to be constructed and used to inform medicine.
  • Growing evidence indicates that the interaction of microgravity and living systems elicits responses similar to rapid aging on Earth that can be used to accelerate disease modeling and therapeutic development.
  • Combined 3D tissue engineering with accelerated aging effects, informed by latest biotech and artificial intelligence and machine learning (AI/ML) offers new and rapidly growing knowledge, opportunities, and products for disease modeling, testing, and drug development.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      (Oct. 25, 2024) — NASA astronaut and Expedition 72 Commander Suni Williams is pictured at the galley inside the International Space Station’s Unity module at the beginning of her day.Credit: NASA Students from Colorado will have the opportunity to hear NASA astronauts Nick Hague and Suni Williams answer their prerecorded questions aboard the International Space Station on Thursday, Nov. 14.
      Watch the 20-minute space-to-Earth call at 1 p.m. EST on NASA+. Learn how to watch NASA content on various platforms, including social media.
      The JEKL Institute for Global Equity and Access, in partnership with the Denver Museum of Nature and Science, will host students from the Denver School of Science and Technology for the event. Students are building CubeSat emulators to launch on high-altitude balloons, and their work will drive their questions with crew.
      Media interested in covering the event must RSVP by 5 p.m., Wednesday, Nov. 13, to Daniela Di Napoli at: daniela.dinapoli@scienceandtech.org or 832-656-5231.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Nov 12, 2024 EditorTiernan P. DoyleLocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Communicating and Navigating with Missions Humans in Space ISS Research Johnson Space Center Near Space Network Space Communications & Navigation Program Sunita L. Williams View the full article
    • By NASA
      NASA/Loral O’Hara The Choctaw Heirloom Seeds investigation flew five varieties of heirloom seeds from the Choctaw Nation of Oklahoma aboard the International Space Station in early November 2023. The seeds are Isito (Choctaw Sweet Potato Squash), Tobi (Smith Peas), Tanchi Tohbi (Flour Corn), Tvnishi (Lambsquarter), and Chukfi Peas. The seeds spent six months aboard station, returning to Earth in April 2024.
      Next spring, Jones Academy students will plant the space-flown seeds alongside Earth-bound seeds of the same type in the school’s Growing Hope Garden. Students will hypothesize how the seeds will grow and make observations throughout the growing season.
      Middle school teachers are developing curriculum incorporating the seeds’ journey to space station and students’ experiments in the garden. This research could impact Native and Indigenous populations across the United States, inviting underrepresented groups to engage with science, technology, engineering, and mathematics.
      Image credit: NASA/Loral O’Hara
      View the full article
    • By NASA
      Vanessa Wyche, director of NASA’s Johnson Space Center provides an update on Exploration Park on Feb. 15, 2022, at the ASCENDxTexas conference at South Shore Harbor Resort and Conference Center. Credit: NASA / Josh Valcarcel Nov. 12, 2024
      Director Vanessa Wyche of NASA’s Johnson Space Center in Houston will join Texas A&M University leaders and guests Friday, Nov. 15, to break ground for the new Texas A&M University Space Institute.
      U.S. media interested in participating in person must contact the NASA Johnson newsroom no later than 5 p.m. Wednesday, Nov. 13, by calling 281-483-5111 or emailing: jsccommu@mail.nasa.gov. NASA’s media accreditation policy is available online.
      The groundbreaking is planned for 10 a.m. CST Nov. 15, at Johnson Space Center’s Exploration Park. Additional participants will include:
      Greg Bonnen, Texas House of Representatives, chairman of House Appropriations Committee William Mahomes, Jr., Board of Regents chairman, Texas A&M University System  John Sharp, chancellor Texas A&M University System  General (Ret.) Mark Welsh III, president, Texas A&M University  Robert H. Bishop, vice chancellor and dean, Texas A&M Engineering Nancy Currie-Gregg, director, Texas A&M University Space Institute Robert Ambrose, associate director for space and robotics initiatives, Texas A&M Engineering Experiment Station  The institute, funded through a $200 million initial investment from the State of Texas, will support research for civilian, defense and commercial space missions as part of NASA Johnson’s Exploration Park. Key features will include the world’s largest indoor simulation spaces for lunar and Mars surface operations, state-of-the-art high-bay laboratories, and multifunctional project rooms.
      The Texas A&M Space Institute is set to open in Summer 2026. 
      NASA is leasing the 240-acre Exploration Park to create facilities that enable a collaborative development environment, increase commercial access, and enhance the United States’ commercial competitiveness in the space and aerospace industries. 
      To learn more about NASA Johnson and the Texas A&M University Space Institute, visit:
      https://www.nasa.gov/nasas-johnson-space-center-hosts-exploration-park
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
    • By European Space Agency
      This compilation of images, captured by the Copernicus Sentinel-2 mission, showcases the characteristic hues of autumn in different European countries.
      View the full article
    • By NASA
      NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.

      The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.

      “The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.

      Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.

      “By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”

      As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.

      NASA will continue providing best practices and offer additional opportunities  to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
  • Check out these Videos

×
×
  • Create New...