Jump to content

NASA C-130 Makes First-Ever Flight to Antarctica for GUSTO Balloon Mission


NASA

Recommended Posts

  • Publishers
4 Min Read

NASA C-130 Makes First-Ever Flight to Antarctica for GUSTO Balloon Mission

20231028-181707.jpg?w=1536
NASA's Wallops Flight Facility C-130 aircraft delivered the agency’s Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) payload to McMurdo Station, Antarctica, on Oct. 28, 2023. The GUSTO mission will launch on a scientific balloon in December 2023.
Credits: NASA/Scott Battaion

On Oct. 28, 2023, NASA’s C-130 Hercules and crew safely touched down at McMurdo Station, Antarctica, after an around-the-globe journey to deliver the agency’s Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO). The United States research station, operated by the National Science Foundation, is host to NASA’s Antarctic long-duration balloon campaign in which the GUSTO mission will take a scientific balloon flight beginning December 2023.

The C-130 crew, which has now completed half of the 26,400-nautical-mile round-trip journey, first stopped at Fort Cavazos, Texas, on Oct. 17, to load the GUSTO observatory and members of its instrument team. Additional stops to service the aircraft and for crew rest included Travis Air Force Base (AFB), California; Hickman AFB, Hawaii; Pago Pago, American Samoa; and Christchurch, New Zealand, before finally reaching McMurdo, Antarctica – a mere 800 miles from the South Pole.

The C-130 aircraft, a white plane with a blue strip down the side, taking off from a runway with a thick tree line in the background.
Aircraft Office teams prepare the C-130 aircraft for departure at NASA’s Wallops Flight Facility in Virginia. The aircraft will deliver the agency’s Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) payload to McMurdo Station, Antarctica. The GUSTO mission will launch on a scientific balloon in December 2023.
NASA/Terry Zaperach

GUSTO, part of NASA’s Astrophysics Explorers Program, is set to fly aboard a football-stadium-sized, zero-pressure scientific balloon 55 days and beyond, on a mapping mission of a portion of the Milky Way Galaxy and nearby Large Magellanic Cloud. A telescope with carbon, oxygen, and nitrogen emission line detectors will measure the interstellar medium, the cosmic material found between stars, and trace the full lifecycle of that matter. GUSTO’s science observations will be performed in a balloon launch from Antarctica to allow for enough observation time aloft, access to astronomical objects, and solar power provided by the austral summer in the polar region.

NASA’s Wallops Flight Facility Aircraft Office in Wallops Island, Virginia, which manages the C-130, spent nearly a year in coordination efforts preparing for GUSTO’s trip to its launch site. From international clearances with agencies, cargo configurations with NASA’s Balloon Program Office, logistical support with the National Science Foundation at McMurdo, to specialized training on nontraditional navigation systems in Antarctica, the Aircraft Office developed an extensive plan to safely deliver the intricate science payload.

The first-ever mission to Antarctica for the NASA C-130 aircraft presented several long-haul cargo flight challenges. Mission managers and NASA’s Office of International and Interagency Relations (OIIR) started early to stay ahead of coordination of international flight clearances.

“We work very hard to make sure that we execute the mission at a high standard of technical competence and professionalism to maintain NASA’s international reputation,” said John Baycura, Wallops research pilot on the GUSTO mission.

Large time-zone changes challenge the crew’s circadian rhythm. Ninety hours in flight across multiple time zones requires an extra pilot and flight engineer on the mission to share the workload. Mandatory crew rest days at strategic locations, per NASA policy, ensure the crew receives enough time to rest, adjust to the schedule, and proceed safely.

NASA C-130 Delivers GUSTO Payload to Antarctica
Visit NASA’s Goddard Space Flight Center Flickr for more photos.

Unexpected weather also tops the list of most pressing challenges for this type of flight. Oceanic crossings come with the added risk of weather complicated by no radar coverage over the ocean. The crew uses DOD and civilian weather agencies to identify hazardous weather and adjust flight routes, altitude, and timings accordingly. “For the specific case of McMurdo, while en route, we called the weather shop at McMurdo Station to get a forecast update before we reached our ‘safe return’ point. Using a conservative approach, we decided whether to continue to McMurdo Station or return to Christchurch and try again the next day,” said Baycura.

For this mission, no commercial entities supported the final leg to Antarctica. U.S. Air Force C-17’s and the New York Air National Guard LC-130’s that typically transport to McMurdo Station had limited space in their schedules. By using NASA’s C-130 for this specialized cargo mission, “the balloon program gained a dedicated asset with a highly experienced crew and support team. This greatly reduced the standard project risks to schedule, cargo, and cost,” said Baycura.

For more information, visit nasa.gov/wallops.

Share

Details

Last Updated
Oct 30, 2023
Editor
Jamie Adkins
Contact
Olivia F. Littleton
olivia.f.littleton@nasa.gov
Location
Wallops Flight Facility

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By NASA
      The Roscosmos Soyuz MS-25 spacecraft is pictured docked to the International Space Station’s Prichal module in this long-duration photograph as it orbited 258 miles above Nigeria.Credit: NASA NASA astronaut Tracy C. Dyson, accompanied by Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko, will depart from the International Space Station aboard the Soyuz MS-25 spacecraft, and return to Earth.
      Dyson, Chub, and Kononenko will undock from the orbiting laboratory’s Prichal module at 4:37 a.m. EDT Monday, Sept. 23, heading for a parachute-assisted landing at 8 a.m. (5 p.m. Kazakhstan time) on the steppe of Kazakhstan, southeast of the town of Dzhezkazgan.
      NASA’s live coverage of return and related activities will stream on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      A change of command ceremony also will stream on NASA platforms at 10:15 a.m. Sunday, Sept. 22. Kononenko will hand over station command to NASA astronaut Suni Williams for Expedition 72, which begins at the time of undocking.
      Spanning 184 days in space, Dyson’s mission includes covering 2,944 orbits of the Earth and a journey of 78 million miles. The Soyuz MS-25 spacecraft launched March 23, and arrived at the station March 25, with Dyson, Roscosmos cosmonaut Oleg Novitskiy, and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6.
      Kononenko and Chub, who launched with O’Hara to the station on the Soyuz MS-24 spacecraft last September, will return after 374 days in space and a trip of 158.6 million miles, spanning 5,984 orbits.
      Dyson spent her fourth spaceflight aboard the station as an Expedition 70 and 71 flight engineer, and departs with Kononenko, completing his fifth flight into space and accruing an all-time record 1,111 days in orbit, and Chub, who completed his first spaceflight.
      After returning to Earth, the three crew members will fly on a helicopter from the landing site to the recovery staging city of Karaganda, Kazakhstan. Dyson will board a NASA plane and return to Houston, while Kononenko and Chub will depart for a training base in Star City, Russia.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 22
      10:15 a.m. – Expedition 71/72 change of command ceremony begins on NASA+ and the agency’s website.
      Monday, Sept. 23
      12:45 a.m. – Hatch closing coverage begins on NASA+ and the agency’s website.
      1:05 a.m. – Hatch closing
      4 a.m. – Undocking coverage begins on NASA+ and the agency’s website.
      4:37 a.m. – Undocking
      6:45 a.m. – Coverage begins for deorbit burn, entry, and landing on NASA+ and the agency’s website.
      7:05 a.m. – Deorbit burn
      8 a.m. – Landing
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 19, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Humans in Space ISS Research Johnson Space Center Tracy Caldwell Dyson View the full article
    • By NASA
      X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers using NASA’s Chandra X-ray Observatory have found a galaxy cluster has two streams of superheated gas crossing one another. This result shows that crossing the streams may lead to the creation of new structure.
      Researchers have discovered an enormous, comet-like tail of hot gas — spanning over 1.6 million light-years long — trailing behind a galaxy within the galaxy cluster called Zwicky 8338 (Z8338 for short). This tail, spawned as the galaxy had some of its gas stripped off by the hot gas it is hurtling through, has split into two streams.
      This is the second pair of tails trailing behind a galaxy in this system. Previously, astronomers discovered a shorter pair of tails from a different galaxy near this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays.
      Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers now have evidence that these streams trailing behind the speeding galaxies have crossed one another. Z8338 is a chaotic landscape of galaxies, superheated gas, and shock waves (akin to sonic booms created by supersonic jets) in one relatively small region of space. These galaxies are in motion because they were part of two galaxy clusters that collided with each other to create Z8338.
      This new composite image shows this spectacle. X-rays from Chandra (represented in purple) outline the multimillion-degree gas that outweighs all of the galaxies in the cluster. The Chandra data also shows where this gas has been jettisoned behind the moving galaxies. Meanwhile an optical image from the Dark Energy Survey from the Cerro Tololo Inter-American Observatory in Chile shows the individual galaxies peppered throughout the same field of view.
      The original gas tail discovered in Z8338 is about 800,000 light-years long and is seen as vertical in this image (see the labeled version). The researchers think the gas in this tail is being stripped away from a large galaxy as it travels through the galaxy cluster. The head of the tail is a cloud of relatively cool gas about 100,000 light-years away from the galaxy it was stripped from. This tail is also separated into two parts.
      The team proposes that the detachment of the tail from the large galaxy may have been caused by the passage of the other, longer tail. Under this scenario, the tail detached from the galaxy because of the crossing of the streams.
      The results give useful information about the detachment and destruction of clouds of cooler gas like those seen in the head of the detached tail. This work shows that the cloud can survive for at least 30 million years after it is detached. During that time, a new generation of stars and planets may form within it.
      The Z8338 galaxy cluster and its jumble of galactic streams are located about 670 million light-years from Earth. A paper describing these results appeared in the Aug. 8, 2023, issue of the Monthly Notices of the Royal Astronomical Society and is available online at: https://academic.oup.com/mnras/article/525/1/1365/7239302.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features a composite image of two pairs of hot gas tails found inside a single galaxy cluster. The image is presented both labeled and unlabeled, with color-coded ovals encircling the hot gas tails.
      In both the labeled and unlabeled versions of the image, mottled purple gas speckles a region of space dotted with distant flecks of red and white. Also present in this region of space are several glowing golden dots. These dots are individual galaxies that together form the cluster Zwicky 8338.
      To our right of center is a glowing golden galaxy with a mottled V shaped cloud of purple above it. Yellow labels identify the two arms of the V as tails trailing behind the hurtling galaxy below.
      To our left of center is another golden galaxy, this one surrounded by purple gas. Behind it, opening toward our right in the shape of a widening V lying on its side, are two more mottled purple clouds. Labeled in white, these newly-discovered gas tails are even larger than the previously discovered tails labeled in yellow. These tails, which overlap with the galaxy on our right, are over 1.6 million light-years long.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      3 min read
      NASA Develops Process to Create Very Accurate Eclipse Maps
      New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
      For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
      Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
      The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
      “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow  — the umbra,” said Wright.
      A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
      The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
      A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
      A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
      Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
      This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
      For more about eclipses, refer to:
      https://science.nasa.gov/eclipses
      By Ernie Wright and Susannah Darling
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Nancy Neal-Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-0039
      nancy.n.jones@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      3 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      4 weeks ago
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…


      Article


      4 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...