Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft completed its first maximum afterburner test at Lockheed Martin’s Skunk Works facility in Palmdale, California. This full-power test, during which the engine generates additional thrust, validates the additional power needed for meeting the testing conditions of the aircraft. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to overcome a major barrier to supersonic flight over land by reducing the noise of sonic booms.Lockheed Martin Corporation/Garry Tice NASA completed the first maximum afterburner engine run test on its X-59 quiet supersonic research aircraft on Dec. 12. The ground test, conducted at Lockheed Martin’s Skunk Works facility in Palmdale, California, marks a significant milestone as the X-59 team progresses toward flight.
      An afterburner is a component of some jet engines that generates additional thrust. Running the engine, an F414-GE-100, with afterburner will allow the X-59 to meet its supersonic speed requirements. The test demonstrated the engine’s ability to operate within temperature limits and with adequate airflow for flight. It also showed the engine’s ability to operate in sync with the aircraft’s other subsystems.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter. The X-59’s first flight is expected to occur in 2025.
      Share
      Details
      Last Updated Dec 20, 2024 EditorDede DiniusContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Integrated Aviation Systems Program Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 4 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 4 hours ago 3 min read Atmospheric Probe Shows Promise in Test Flight
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Supersonic Flight
      Quesst: The Vehicle
      View the full article
    • By NASA
      X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can tell us about the composition of the matter and how fast and in what direction it is moving. Quantum calorimeters are opening this new window on the Universe. First promised four decades ago, the quantum-calorimeter era of X-ray astronomy has finally dawned.
      Photo of the XRISM/Resolve quantum-calorimeter array in its storage container prior to integration into the instrument. The 6×6 array, 5 mm on a side, consists of independent detectors – each one a thermally isolated silicon thermistor with a HgTe absorber. The spectrometer consisting of this detector and other essential technologies separates astrophysical X-ray spectra into about 2400 resolution elements, which can be thought of as X-ray colors.NASA GSFC A quantum calorimeter is a device that makes precise measurements of energy quanta by measuring the temperature change that occurs when a quantum of energy is deposited in an absorber with low heat capacity. The absorber is attached to a thermometer that is somewhat decoupled from a heat sink so that the sensor can heat up and then cool back down again. To reduce thermodynamic noise and the heat capacity of the sensor, operation at temperatures less than 0.1 K is required. 
      The idea for thermal measurement of small amounts of energy occurred in several places in the world independently when scientists observed pulses in the readout of low-temperature thermometers and infrared detectors. They attributed these spurious signals to passing cosmic-ray particles, and considered optimizing detectors for sensitive measurement of the energy of particles and photons.
      The idea to develop such sensors for X-ray astronomy was conceived at Goddard Space Flight Center in 1982 when X-ray astronomers were considering instruments to propose for NASA’s planned Advanced X-ray Astrophysics Facility (AXAF). In a fateful conversation, infrared astronomer Harvey Moseley suggested thermal detection could offer substantial improvement over existing solid-state detectors. Using Goddard internal research and development funding, development advanced sufficiently to justify, just two years later, proposing a quantum-calorimeter X-ray Spectrometer (XRS) for inclusion on AXAF. Despite its technical immaturity at the time, the revolutionary potential of the XRS was acknowledged, and the proposal was accepted.
      The AXAF design evolved over the subsequent years, however, and the XRS was eliminated from its complement of instruments. After discussions between NASA and the Japanese Institute of Space and Astronautical Science (ISAS), a new XRS was included in the instrument suite of the Japanese Astro-E X-ray observatory. Astro-E launched in 2000 but did not reach orbit due to an anomaly in the first stage of the rocket. Astro-E2, a rebuild of Astro-E, was successfully placed in orbit in 2005 and renamed Suzaku, but the XRS instrument ceased operation before observations started due to loss of the liquid helium, an essential part of the detector cooling system, caused by a faulty storage system.
      A redesigned mission, Astro-H, that included a quantum-calorimeter instrument with a redundant cooling system was successfully launched in 2016 and renamed Hitomi. Hitomi’s Soft X-ray Spectrometer (SXS) obtained high resolution spectra of the Perseus cluster of galaxies and a few other sources before a problem with the attitude control system caused the mission to be lost roughly one month after launch. Even so, Hitomi was the first orbiting observatory to obtain a scientific result using X-ray quantum calorimeters. The spectacular Perseus spectrum generated by the SXS motivated yet another attempt to implement a spaceborne quantum-calorimeter spectrometer.
      The X-ray Imaging and Spectroscopy Mission (XRISM) was launched in September 2023, with the spectrometer aboard renamed Resolve to represent not only its function but also the resolve of the U.S./Japan collaboration to study the Universe through the window of this new capability. XRISM has been operating well in orbit for over a year.  
      Development of the Sensor Technology
      Development of the sensor technology employed in Resolve began four decades ago. Note that an X-ray quantum-calorimeter spectrometer requires more than the sensor technology. Other technologies, such as the coolers that provide a
      The sensors used from XRS through Resolve were all based on silicon-thermistor thermometers and mercury telluride (HgTe) X-ray absorbers. They used arrays consisting of 32 to 36 pixels, each of which was an independent quantum calorimeter.  Between Astro-E and Astro-E2, a new method of making the thermistor was developed that significantly reduced its low-frequency noise. Other fabrication advances made it possible to make reproducible connections between absorbers and thermistors and to fit each thermistor and its thermal isolation under its X-ray absorber, making square arrays feasible.
      Through a Small Business Innovation Research (SBIR) contract executed after the Astro-E2 mission, EPIR Technologies Inc. reduced the specific heat of the HgTe absorbers. Additional improvements made to the cooler of the detector heat sink allowed operation at a lower temperature, which further reduced the specific heat. Together, these changes enabled the pixel width to be increased from 0.64 mm to 0.83 mm while still achieving a lower heat capacity, and thus improving the energy resolution. From Astro-E through Astro-H, the energy resolution for X-rays of energy around 6000 eV improved from 11 eV, to 5.5 eV, to 4 eV. No changes to the array design were made between Astro-H and XRISM.
      Resolve detector scientist Caroline Kilbourne installing the flight Resolve quantum-calorimeter array into the assembly that provides its electrical, thermal, and mechanical interfaces.NASA GSFC Over the same period, other approaches to quantum-calorimeter arrays optimized for the needs of future missions were developed. The use of superconducting transition-edge sensors (TES) instead of silicon (Si) thermistors led to improved energy resolution, more pixels per array, and multiplexing (a technique that allows multiple signals to be carried on a single wire). Quantum-calorimeter arrays with thousands of pixels are now standard, such as in the NASA contribution to the future European New Advanced Telescope for High-ENergy Astrophysics (newAthena) mission. And quantum calorimeters using paramagnetic thermometers — which unlike TES and Si thermistors require no dissipation of heat in the thermometer for it to be read out — combined with high-density wiring are a promising route for realizing even larger arrays. (See Astrophysics Technology Highlight on these latest developments.)
      The Resolve instrument aboard XRISM (X-ray Imaging and Spectroscopy Mission) captured data from the center of galaxy NGC 4151, where a supermassive black hole is slowly consuming material from the surrounding accretion disk. The resulting spectrum reveals the presence of iron in the peak around 6.5 keV and the dips around 7 keV, light thousands of times more energetic that what our eyes can see. Background: An image of NGC 4151 constructed from a combination of X-ray, optical, and radio light.Spectrum: JAXA/NASA/XRISM Resolve. Background: X-rays, NASA/CXC/CfA/J.Wang et al.; optical, Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; radio, NSF/NRAO/VLA Results from Resolve
      So, what is Resolve revealing about the Universe? Through spectroscopy alone, Resolve allows us to construct images of complex environments where collections of gas and dust with various attributes exist, emitting and absorbing X-rays at energies characteristic of their various compositions, velocities, and temperatures. For example, in the middle of the galaxy known as NCG 4151 (see figure above), matter spiraling into the central massive black hole forms a circular structure that is flat near the black hole, more donut-shaped further out, and, according to the Resolve data, a bit lumpy. Matter near the black hole is heated up to X-ray-emitting temperatures and irradiates the matter in the circular structure. The Resolve spectrum has a bright narrow emission line (peak) from neutral iron atoms that must be coming from colder matter in the circular structure, because hotter material would be ionized, and would have a different emission signature. Nonetheless, the shape of the iron line needs three components to describe it, each coming from a different lump in the circular structure. The presence of absorption lines (dips) in the spectrum provides further detail about the structure of the infalling matter.
      A second example is the detection of X-ray emission by Resolve from the debris of stars that have exploded, such as N132D (see figure below), that will improve our understanding of the explosion mechanism and how the elements produced in stars get distributed, and allow us to infer the type of star each was before ending in a supernova. Elements are identified by their characteristic emission lines, and shifts of those lines via the Doppler effect tell us how fast the material is moving.
      XRISM’s Resolve instrument captured data from supernova remnant N132D in the Large Magellanic Cloud to create the most detailed X-ray spectrum of the object ever made. The spectrum reveals peaks associated with silicon, sulfur, argon, calcium, and iron. Inset at right is an image of N132D captured by XRISM’s Xtend instrument.JAXA/NASA/XRISM Resolve and Xtend These results are just the beginning. The rich Resolve data sets are identifying complex velocity structures, rare elements, and multiple temperature components in a diverse ensemble of cosmic objects. Welcome to the quantum calorimeter era! Stay tuned for more revelations!
      Project Leads: Dr. Caroline Kilbourne, NASA Goddard Space Flight Center (GSFC), for silicon-thermistor quantum calorimeter development from Astro-E2 through XRISM and early TES development. Foundational and other essential leadership provided by Dr. Harvey Moseley, Dr. John Mather, Dr. Richard Kelley, Dr. Andrew Szymkowiak, Mr. Brent Mott, Dr. F. Scott Porter, Ms. Christine Jhabvala, Dr. James Chervenak (GSFC at the time of the work) and Dr. Dan McCammon (U. Wisconsin).
      Sponsoring Organizations and Programs:  The NASA Headquarters Astrophysics Division sponsored the projects, missions, and other efforts that culminated in the development of the Resolve instrument.
      Explore More
      7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      Article 1 day ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
      Article 1 day ago 2 min read Hubble Images a Grand Spiral
      Article 4 days ago View the full article
    • By European Space Agency
      Image: Fit for service: Themis reusable rocket stage demonstrator View the full article
    • By NASA
      Artist’s concept of “hot Neptune” TOI-3261 b. NASA/JPL-Caltech/K. Miller (Caltech/IPAC) By Grace Jacobs Corban
      The Discovery
      A Neptune-sized planet, TOI-3261 b, makes a scorchingly close orbit around its host star. Only the fourth object of its kind ever found, the planet could reveal clues as to how planets such as these form.
      Key Facts
      An international team of scientists used the NASA space telescope, TESS (the Transiting Exoplanet Survey Satellite), to discover the exoplanet (a planet outside our solar system), then made further observations with ground-based telescopes in Australia, Chile, and South Africa. The measurements placed the new planet squarely in the “hot Neptune desert” – a category of planets with so few members that their scarcity evokes a deserted landscape. This variety of exoplanet is similar to our own Neptune in size and composition, but orbits extremely closely to its star. In this case, a “year” on TOI-3261 b is only 21 hours long. Such a tight orbit earns this planet its place in an exclusive group with, so far, only three other members: ultra-short-period hot Neptunes whose masses have been precisely measured.
      Details
      Planet TOI-3261 b proves to be an ideal candidate to test new computer models of planet formation. Part of the reason hot Neptunes are so rare is that it is difficult to retain a thick gaseous atmosphere so close to a star. Stars are massive, and so exert a large gravitational force on the things around them, which can strip the layers of gas surrounding a nearby planet. They also emit huge amounts of energy, which blow the gas layers away. Both of these factors mean that hot Neptunes such as TOI-3261 b might have started out as much larger, Jupiter-sized planets, and have since lost a large portion of their mass.
      By modeling different starting points and development scenarios, the science team determined that the star and planet system is about 6.5 billion years old, and that the planet started out as a much larger gas giant. It likely lost mass, however, in two ways: photoevaporation, when energy from the star causes gas particles to dissipate, and tidal stripping, when the gravitational force from the star strips layers of gas from the planet. The planet also might have formed farther away from its star, where both of these effects would be less intense, allowing it to retain its atmosphere.
      The remaining atmosphere of the planet, one of its most interesting features, will likely invite further atmospheric analysis, perhaps helping to unravel the formation history of this denizen of the “hot Neptune desert.” Planet TOI-3261 b is about twice as dense as Neptune, indicating that the lighter parts of its atmosphere have been stripped away over time, leaving only the heavier components. This shows that the planet must have started out with a variety of different elements in its atmosphere, but at this stage, it is hard to tell exactly what. This mystery could be solved by observing the planet in infrared light, perhaps using NASA’s James Webb Space Telescope – an ideal way to see the identifying fingerprints of the different molecules in the planet’s atmosphere. This will not just help astronomers understand the past of TOI-3261 b, but also begin to uncover the physical processes behind all hot, giant planets.
      Fun Facts
      The first-ever discovery of an ultra-short-period hot Neptune, LTT-9779 b, came in 2020. Since then, TESS discoveries TOI-849 b and TOI-332 b have also joined the elite ultra-short-period hot-Neptune club (with masses that have been precisely measured). Both LTT-9779 b and TOI-849 b are in the queue for infrared observations with the James Webb Space Telescope, potentially broadening our understanding of these planets’ atmospheres in the coming years.
      The Discoverers
      An international science team led by astronomer Emma Nabbie of the University of Southern Queensland published their paper on the discovery, “Surviving in the Hot Neptune Desert: The Discovery of the Ultrahot Neptune TOI-3261 b,” in The Astronomical Journal in August 2024.
      View the full article
    • By NASA
      NASA Rocket Engine Fireplace - 8 Hours in 4K
  • Check out these Videos

×
×
  • Create New...