Jump to content

Submit Your 2024 Event Proposal to NASA Glenn


Recommended Posts

  • Publishers
Posted

4 min read

Submit Your 2024 Event Proposal to NASA Glenn

NASA Glenn researchers build paper satellites with students during a STEM event. Two Glenn employees are behind a table, one sitting and one standing. The one sitting holds a paper satellite, and the table is scattered with crayons, paper, and brochures. Three people on the other side of the table watch the demonstration, including a child in a blue hoodie who faces away from the camera.
Lilia Miller and Molly Kearns, employees from NASA’s Glenn Research Center, discuss communication in space as they build paper satellites with students during a STEM event at Rocket Mortgage Field House in Cleveland, Ohio.
NASA/GRC/Jef Janis

Solicitation posted: Oct. 26, 2023
Proposal form URL: 
https://osirris.grc.nasa.gov/request/request.cfm
Proposal submission deadline: Nov. 24, 2023
Notification of event selection: Dec. 15, 2023 

2024 Call for Event Proposals

Opportunity Description

NASA’s Glenn Research Center in Cleveland is seeking to collaborate with organizations across the country to bring the NASA experience to new, diverse audiences.  

This opportunity is designed to provide organizations with:

  • Interactive NASA exhibits and historical artifacts to showcase NASA’s missions and research.
  • Access to NASA subject matter experts for interactive speaking engagements.

The center is requesting event proposals to:

  • Reach larger audiences by leveraging the experiences of community organizations with existing high-quality events.
  • Strengthen community relationships by collaborating on efforts that result in increased returns on mutually desired outcomes.
  • Raise awareness of NASA’s contributions to the nation’s aeronautics and space programs.

NASA’s Glenn Research Center

NASA’s Glenn Research Center in Cleveland designs, develops, and tests innovative technology to revolutionize air travel, advance space exploration, and improve life on Earth. As one of 10 NASA centers, and the only one in the Midwest, Glenn is a vital contributor to the region’s economy and culture. Many NASA missions have Glenn contributions, and every U.S. aircraft has NASA Glenn technology on board, making flight cleaner, safer, and quieter.

Glenn is conducting revolutionary aeronautics research in electrified aircraft propulsion, advanced materials, and alternative fuels to help the nation achieve its climate change goals. The center is also exploring next-generation supersonic and hypersonic aircraft.

In addition to its aeronautics research, NASA Glenn’s world-class test facilities and unrivaled expertise in power, propulsion, and communications are crucial to advancing the Artemis program. Glenn’s solar electric propulsion will help propel future missions to the Moon and eventually Mars, where astronauts will conduct scientific research and establish a presence on the surface. The road to the Moon goes through Ohio.

Glenn’s Expertise:

  • Air-Breathing Propulsion (Jet Engines)
  • Communications
  • In-Space Propulsion and Cryogenic Fluids Management
  • Power, Energy Storage, and Conversion
  • Materials and Structures for Extreme Environments
  • Physical Sciences and Biomedical Technologies in Space

Eligibility Requirements

NASA is seeking:

  • Organizations with established events that have direct connections to their communities and reach diverse audiences. 
    Greater consideration will be given to organizations reaching underserved and/or underrepresented communities. For purposes of this solicitation, underserved and/or underrepresented communities include Black, Latino, Indigenous, and Native American persons; Asian Americans, Pacific Islanders, and other persons of color; members of religious minorities; lesbian, gay, bisexual, transgender, and queer (LGBTQ+) persons; persons with disabilities; persons who live in rural areas; and persons otherwise adversely affected by persistent poverty or inequality (source: NASA’s Mission Equity). Greater consideration may also be given to organizations throughout the Great Lakes Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) based on factors such as schedule and budget availability.
  • Events scheduled to occur between Jan. 1, 2024, and Dec. 31, 2024.

Selected organizations must agree to the following:

  • Attend mutually agreed-upon planning meetings held virtually through an online business communication platform.
  • Be responsible for coordinating all marketing, media communications, and logistics as described in the event proposal.
  • Adhere to NASA Media Usage Guidelines for NASA media and logos.
  • Provide final attendance data within one week of the conclusion of the event including the following:
    • Number of attendees
    • Estimated percentage of attendees from underrepresented audiences

Submitting a Proposal

All proposals are to be submitted through the online proposal form here. Proposals must be submitted by 5 p.m. Eastern time on Nov. 24, 2023. Only proposals submitted online will be accepted.

Proposal Review Process

Proposals will be evaluated to determine the likelihood of event success using the following criteria:

  • Number of proposed audience participants.
  • Percentage of audience from underrepresented populations as defined in the solicitation.
  • Alignment of the program’s goals and objectives to those of this opportunity.
  • Expected return on investment of NASA resources.
  • Plans to maximize audience participation through marketing and media communications.
  • Evidence of historical attendance at this or similar events hosted by the proposing organization.

Proposing organizations will be notified of their selection status by Dec. 15, 2022.

Point of Contact

If you have questions about the project or the online proposal form, contact NASA Glenn Research Center’s Office of Communications at: GRC-Public-Engagement@mail.nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Open Data Turns Science Into Art
      Guests enjoy Beyond the Light, a digital art experience featuring open NASA data, at ARTECHOUSE in Washington, D.C. on September 19, 2023. NASA/Wade Sisler An art display powered by NASA science data topped the Salesforce Tower in San Francisco, CA throughout December 2024. Nightly visitors enjoyed “Synchronicity,” a 20-minute-long video art piece by Greg Niemeyer, which used a year’s worth of open data from NASA satellites and other sources to bring the rhythms of the Bay Area to life.
      Data for “Synchronicity” included atmospheric data from NASA and NOAA’s GOES (Geostationary Operational Environmental Satellites), vegetation health data from NASA’s Landsat program, and the Sun’s extreme ultraviolet wavelengths as captured by the NASA and ESA (European Space Agency) satellite SOHO (Solar and Heliospheric Observatory). Chelle Gentemann, the program scientist for the Office of the Chief Science Data Officer within NASA’s Science Mission Directorate, advised Niemeyer on incorporating data into the piece.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Greg Niemeyer’s “Synchronicity” was displayed on Salesforce Tower in San Francisco, CA, in December 2024. A recording of the piece on the tower’s display and the original animation are shown here. The video art piece was created using open NASA data, as well as buoy data from the National Oceanographic and Atmospheric Administration (NOAA). Greg Niemeyer/Emma Strebel “Artists have a lot to contribute to science,” Gentemann said. “Not only can they play a part in the actual scientific process, looking at things in a different way that will lead to new questions, but they’re also critical for getting more people involved in science.”
      NASA’s history of engaging with artists goes back to the 1962 launch of the NASA Art Program, which partnered with artists in bringing the agency’s achievements to a broader audience and telling the story of NASA in a different and unexpected way. Artists such as Andy Warhol, Norman Rockwell, and Annie Leibovitz created works inspired by NASA missions. The Art Program was relaunched in September 2024 with a pair of murals evoking the awe of space exploration for the Artemis Generation.
      The inaugural murals for the relaunched NASA Art Program appear side-by-side at 350 Hudson Street, Monday, Sept. 23, 2024, in New York City. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. NASA/Joel Kowsky The use of NASA data in art pieces emerged a few decades after the NASA Art Program first launched. Several in-house agency programs, such as NASA’s Scientific Visualization Studio, create stunning animated works from science data. In the realm of audio, NASA’s Chandra X-ray Observatory runs the Universe of Sound project to convert astronomy data into “sonifications” for the public’s listening pleasure.
      Collaborations with external artists help bring NASA data to an even broader audience. NASA’s commitment to open science – making it as easy as possible for the public to access science data – greatly reduces the obstacles for creatives looking to fuse their art with cutting-edge science.
      Michelle Thaller, assistant director for science communication at Goddard, presents the “Pillars of Creation” in the Eagle nebula to the ARTECHOUSE team during a brainstorming session at Goddard. The left image is a view from the Hubble Space Telescope, and the right view is from the Webb telescope. NASA/Wade Sisler Another recent blend of NASA data and art came when digital art gallery ARTECHOUSE created “Beyond the Light,” a 26-minute immersive video experience featuring publicly available images from the James Webb Space Telescope and Hubble Space Telescope. The experience has been running at various ARTECHOUSE locations since September 2023. The massive potential for art to incorporate science data promises to fuel even more of these collaborations between NASA and artists in the future.
      “One of the integral values of open science is providing opportunities for more people to participate in science,” Gentemann said. “I think that by getting the public interested in how this art is done, they also are starting to play with scientific data, maybe for the first time. In that way, art has the power to create new scientists.”
      Learn more about open science at NASA at https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Open Science Explore More
      4 min read NASA Open Science Reveals Sounds of Space


      Article


      2 months ago
      4 min read NASA AI, Open Science Advance Disaster Research and Recovery


      Article


      3 months ago
      4 min read Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open


      Article


      5 months ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Mars Perseverance Rover


      The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-9 mission, including NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, along with Roscosmos cosmonaut Aleksandr Gorbunov, pose for a photo aboard the International Space StationNASA Media are invited to hear from NASA’s SpaceX Crew-9 astronauts during a news conference beginning at 11:55 a.m. EST, Tuesday, March 4, from the International Space Station.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore will discuss their return to Earth on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m. Monday, March 3, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the news conference no later than 15 minutes prior to the start of the call. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
      Crew-9 contributed to hundreds of scientific experiments, including swabbing the station’s exterior for microbes, printing 3D medical devices, and studying how moisture, orbital altitude, and ultraviolet light affect plant growth.
      The crew will depart the space station after the arrival of Crew-10 and a short handover period. Ahead of Crew-9’s return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.
      The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Follow updates on the Crew-9 mission at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Astronauts Barry E. Wilmore International Space Station (ISS) Sunita L. Williams
      View the full article
    • By NASA
      Intuitive Machines-2: Delivering Science and Tech to the Moon (NASA Mission Trailer)
    • By NASA
      Intuitive Machines-2 Launch to the Moon (Official NASA Broadcast)
    • By NASA
      6 Min Read NASA Stennis Flashback: Learning About Rocket Engine Smoke for Safe Space Travel
      An image shows engineers at an early version of the test stand at the Diagnostic Testbed Facility. From 1988 to the mid-1990s, NASA Stennis engineers operated the facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. Credits: NASA/Stennis NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site. More than 35 years ago, it also served as a hands-on classroom for NASA engineers seeking to improve the efficiency of space shuttle main engines.
      From 1988 to the mid-1990’s, NASA Stennis engineers operated a Diagnostic Test Facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. The effort also laid the groundwork for the frontline research-and-development testing conducted at the center today.
      “The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team and of its willingness to support the nation’s space exploration program in all ways needed and possible,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate.
      The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team…
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      Tests conducted at the Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. NASA/Stennis An image shows the Diagnostic Testbed Facility test stand data acquisition trailer. NASA/Stennis The Need
      Envision a rocket or space vehicle launching into the sky. A trail of bright exhaust, known as the engine plume, follows. As metals wear down in the engines from the intense heat of the combustion process, the flame glows with colors, some visible, such as orange or yellow, and others undetectable by the human eye.
      The colors tell a story – about the health and operation of the engine and its components. For space shuttle main engines, which flew on multiple missions, engineers needed to understand that story, much as a doctor needs to understand the condition of a human body during checkup, to ensure future engine operation.
      Where better place to study such details than the nation’s premier propulsion test site? Paging NASA Stennis.
      An image shows the rocket motor and thruster at the Diagnostic Testbed Facility. NASA/Stennis An image shows the Diagnostic Testbed Facility blended team of NASA personnel and contractors. Kneeling, left to right, is Brantly Adams (NASA), Felix Bircher (Sverdrup Technology), Dennis Butts (Sverdrup Technology), and Nikki Raines (Sverdrup Technology). Standing, left to right, NASA astronaut John Young, Greg Sakala (Sverdrup Technology), Barney Nokes (Sverdrup Technology), John Laboda (Sverdrup Technology), Glenn Varner (NASA), Stan Gill (NASA), Bud Nail (NASA), Don Sundeen (Sverdrup Technology), NASA astronaut John Blaha.NASA/Stennis The Facility
      NASA Stennis has long enabled and supported innovative and collaborative work to benefit both the agency and the commercial space industry. When NASA came calling in the late 1980s, site engineers went to work on a plan to study space shuttle main engine rocket exhaust.
      The concept for an enabling structure about the size of a home garage was born in October 1987. Five months later, construction began on a Diagnostic Testbed Facility to provide quality research capabilities for studying rocket engine exhaust and learning more about the metals burned off during hot fire.
      The completed facility featured a 1,300-square-foot control and data analysis center, as well as a rooftop observation deck. Small-scale infrastructure was located nearby for testing a 1,000-pound-thrust rocket engine that simulated the larger space shuttle main engine. The 1K engine measured about 2 feet in length and six inches in diameter. Using a small-scale engine allowed for greater flexibility and involved less cost than testing the much-larger space shuttle engine.
      An image shows Sverdrup Technology’s Robert Norfleet as he preps the dopant injection system for testing at the Diagnostic Testbed Facility. The goal of the facility was to inject known metals and materials in a chemical form and then look at what emissions were given off. During one test, generally a six or 12 second test, operators would inject three known dopants, or substances, and then run distilled water between each test to clean out the system.NASA/Stennis An image shows engineers Stan Gill, Robert Norfleet, and Elizabeth Valenti in the Diagnostic Testbed Facility test control center. NASA/Stennis The Process
      Engineers could quickly conduct multiple short-duration hot fires using the smaller engine. A six-second test provided ample time to collect data from engine exhaust that reached as high as 3,900 degrees Fahrenheit.
      Chemical solutions simulating engine materials were injected into the engine combustion chamber for each hot fire. The exhaust plume then was analyzed using a remote camera, spectrometer, and microcomputers to determine what colors certain metals and elements emit when burning.
      Each material produced a unique profile. By matching the profiles to the exhaust of space shuttle main engine tests conducted at NASA Stennis, determinations could be made about which engine components were undergoing wear and what maintenance was needed.
      We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work…It was a very good learning experience.
      Glenn Varner
      NASA Stennis Engineer
      The Benefits
      The Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics.
      Multiple tests were conducted. The average turnaround time between hot fires was 18 to 20 minutes with the best turnaround from one test to another taking just 12 minutes. By January 1991, the facility had recorded a total of 588 firings for a cumulative 3,452 seconds.
      As testing progressed, the facility team evolved into a collection of experts in plume diagnostics. Longtime NASA Stennis engineer Glenn Varner serves as the mechanical operations engineer at the Thad Cochran Test Stand, where he contributed to the successful testing of the first SLS (Space Launch System) core stage onsite.
      However, much of Varner’s hands-on experience came at the Diagnostic Test Facility. “We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work,” he said. “It was a very good learning experience.”
      An image shows the Diagnostic Testbed Facility team working in the test control center. Seated, left to right, is Steve Nunez, Glenn Varner, Joey Kirkpatrick. Standing, back row left to right, is Scott Dracon and Fritz Policelli. Vince Pachel is pictured standing wearing the headset. NASA/Stennis The physical remnants of the Diagnostic Testbed Facility are barely recognizable now, but that spirit and approach embodied by that effort and its teams continues in force at the center.
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      The Impact
      The Diagnostic Testbed Facility impacted more than just those engineers involved in the testing. Following the initial research effort, the facility underwent modifications in January 1993. Two months later, facility operators completed a successful series of tests on a small-scale liquid hydrogen turbopump for a California-based aerospace company.
      The project marked an early collaboration between the center and a commercial company and helped pave the way for the continued success of the NASA Stennis E Test Complex. Building on Diagnostic Testbed Facility knowledge and equipment, the NASA Stennis complex now supports multiple commercial aerospace projects with its versatile infrastructure and team of propulsion test experts.
      “The physical remnants of the Diagnostic Testbed Facility are barely recognizable now,” Schuyler said. “But that spirit and approach embodied by that effort and its teams continues in force at the center.”
      Additional Information
      NASA Stennis has leveraged hardware and expertise from the Diagnostic Testbed Facility to provide benefit to NASA and industry for two decades and counting.
      The facility’s thruster, run tanks, valves, regulators and instrumentation were used in developing the versatile four-stand E Test Complex at NASA Stennis that includes 12 active test cell positions capable of various component, engine, and stage test activities.
      “The Diagnostic Testbed Facility was the precursor to that,” said NASA engineer Glenn Varner. “Everything but the structure still in the grass moved to the E-1 Test Stand, Cell 3. Plume diagnostics was part of the first testing there.”
      When plume diagnostic testing concluded at E-1, equipment moved to the E-3 Test Stand, where the same rocket engine used for the Diagnostic Testbed Facility has since performed many test projects.
      The Diagnostic Testbed Facility thruster also has been used for various projects at E-3, most recently in a project for the exploration upper stage being built for use on future Artemis missions. 
      In addition to hardware, engineers who worked at the Diagnostic Testbed Facility also moved on to support E Test Complex projects. There, they helped new NASA engineers learn how to handle gaseous hydrogen and liquid hydrogen propellants. Engineers learned about purging, ignition, and handling propellants and all the components needed for a successful test.
      “From an engineering perspective, the more knowledge you have of the processes and procedures to make propulsion work, the better off you are,” Varner said. “It applied then and still applies today. The Diagnostic Testbed Facility contributed to the future development of NASA Stennis infrastructure and expertise.”
      Share
      Details
      Last Updated Feb 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 7 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
      It may have been small, but the white puff of smoke exiting the B-2 Test…
      Article 2 years ago Keep Exploring Discover More Topics From NASA Stennis
      NASA’s Stennis Space Center History
      NASA Stennis Images
      NASA Stennis Fact Sheets
      NASA Stennis Front Door
      View the full article
  • Check out these Videos

×
×
  • Create New...