Jump to content

NASA’s Scientists and Volunteers Tackle the October 14 Solar Eclipse


Recommended Posts

  • Publishers
Posted
3 Min Read

NASA’s Scientists and Volunteers Tackle the October 14 Solar Eclipse

A crescent of bright white light surrounds all but one edge of the black Moon. About halfway along that dark edge is a small spot of sunlight.
In this image captured during the October 14 annular solar eclipse we can see that the disk of the Sun was almost totally blocked by the smaller dark Moon. Between the horns of the crescent is a Baily’s Bead, a spot of sunlight peeking through a valley on the Moon’s apparent edge.
Credits:
Clinton Lewis, West Kentucky University

Did you see October 14th’s solar eclipse? Most of the time we can easily forget that we are on a planet spinning and orbiting in space with other celestial bodies. Watching the Moon move across the face of the Sun reminds us of our place in the solar system. 

Several NASA science teams and many NASA volunteers used the October 14 eclipse to collect data and test observation protocols, software, hardware, and logistics. They met enthusiastic crowds of people taking in the spectacle and making unique observations. The October eclipse was an “annular” eclipse, meaning that some sunlight always leaked around the edges of the moon. The next solar eclipse, on April 8, 2024, will be a total eclipse. Total eclipses are rare scientific opportunities, so NASA teams used the October eclipse to practice and prepare for the upcoming April eclipse.

In New Mexico, the annual Albuquerque International Balloon Fiesta rolled right into an Annular Eclipse event! An estimated 100,000 people took in the view of the annular eclipse of the Sun from Albuquerque, which was directly on the path where the eclipse reached its maximum – the path of annularity.

On a dry and dusty open space, a huge crowd of people has gathered, both standing and sitting, many looking up at the sky. The sky above is blue, with some wispy clouds down by the horizon. On the far left some white tent roofs are visible. In the distance on the right we can see a partially inflated red hot air balloon, resting on the ground.
The crowd gathered for the Albuquerque International Balloon Fiesta and annular eclipse.
Credit: Heather Fischer
4566ace2-7846-4951-8196-f3fd0b099ca9.jpe
The 3-D NASA logo sits outside an exhibit tent at the Albuquerque Balloon fiesta and subsequent eclipse viewing event.
Credit: Heather Fischer

Elsewhere in New Mexico, the Eclipse Soundscapes team gathered in the Randall Davey Audubon Center & Sanctuary in Sante Fe. The project team deployed eight AudioMoth recording devices the day before the eclipse and retrieved them the day after the eclipse to support research on whether or not eclipses affect life – and sounds – on Earth.  

They also recruited staff and visitors to the nearby Valles Caldera National Preserve to participate in Eclipse Soundscapes as Observers. Many folks used the prompting worksheets – and eclipse glasses – provided by Eclipse Soundscapes to record and report their multisensory experience of the eclipse. 

A bearded man in a baseball hat smiles at the camera while he holds up an AudioMoth recording device, which is a small rectangular device about half the size of a cell phone. Next to him, a woman holding a pen and paper covered in notes. She’s also looking at the camera and smiling. The two are under an evergreen trees and surrounded by shrubs with little, yellowing leaves.
Eclipse Soundscapes Team members Dr. Henry “Trae” Winter and MaryKay Severino, getting ready to deploy an AudioMoth device at the Randall Davey Audubon Center & Sanctuary in Sante Fe, NM
Credit: MaryKay Severino
Two women sit on folding camp chairs outside. Behind them is a wooden fence and a small barn built of logs. The grass in the field is golden rather than green. The woman on the left has straight blonde hair and she’s looking at a paper in her hands. The woman on the right, who has brown hair and is wearing eclipse glasses, is looking up at the sky. Both are smiling. A black and brown dog sits on the ground between the two women.
Valles Caldera Park visitors used the Eclipse Soundscapes worksheet and eclipse glasses distributed by Park Rangers to learn more about the Eclipse Soundscapes project, take notes on what nature changes they heard, saw, or felt during the annular eclipse, and then use a QR code to submit their observations to the project. 
Credit: MaryKay Severino
A crowd of people, including families with young children, gathers on a broad plaza paved with concrete tiles. The people are in small groups, some with lawn chairs, some sitting on the tiles. The sky is a cloudless blue.
The SunSketcher team gathered in Odessa, TX, together with other eclipse chasers,  to test their new cell phone app. This app will allow volunteers to help measure the size and shape of the Sun during April’s total eclipse.
Credit: Clinton Lewis, West Kentucky University
A crescent of bright white light surrounds all but one edge of the black Moon. About halfway along that dark edge is a small spot of sunlight.
In this image captured during the October 14 annular solar eclipse we can see that the disk of the Sun was almost totally blocked by the smaller dark Moon. Between the horns of the crescent is a Baily’s Bead, a spot of sunlight peeking through a valley on the Moon’s apparent edge.
Credit: Clinton Lewis, West Kentucky University

The Dynamic Eclipse Broadcasting Initiative was also on the move. Project leader Bob Baer, student Nathan Culli, and collaborator Mike Kentrianakis gathered in Midland, TX, for a good view of the annular eclipse. They tested their set-up and managed to successfully broadcast their telescope view from sunny Texas back to their home institution of Southern Illinois University in cloudy Carbondale. 

On a parking lot near white and grey three-floor residential buildings two men are hunched over telescopes and computers, respectively. Square-sided equipment bags lie open on the pavement. The shadows cast on the ground are long, indicating it is the beginning or end of a long day.
The DEB Initiative set up for testing pre-eclipse.
Credit: Bob Baer and Mike Kentrianakis
baer-ussie.jpeg?w=600
Members of the DEB Initiative under their reflective tent in Midland, TX, ready to broadcast their telescope view of the eclipse back to the stadium at their home institution of Southern Illinois University in Carbondale.
Credit: Bob Baer and Mike Kentrianakis.
img-7235-01.jpeg?w=1280
Members of the Salt Lake Astronomical Society, NASA volunteers and others gather in anticipation of the October 14, 2023 annular eclipse.
Credit: NASA volunteer Danny Roylance

All in all, the day was a great success! On to April 8, 2024 and the total eclipse!

More information: 

Curious about the other eclipse science projects that you can join? Check out this website https://science.nasa.gov/heliophysics/programs/citizen-science/

and this cool video: https://twitter.com/i/status/1713910355842257261 

Want to know more and keep up to date on all the Heliophysics Big Year events? Follow @NASASun on X. 

Want another chance to see the October 14 annular eclipse? Check out the recording of NASA’s live stream of the eclipse at https://twitter.com/i/broadcasts/1zqKVqymlNPxB

M

Websites:

https://debinitiative.org/

https://eclipsesoundscapes.org/

https://sunsketcher.org/

NASA’s Citizen Science Program:
Learn about NASA citizen science projects
Follow on X
Follow on Facebook 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 4 min read
      NASA-Assisted Scientists Get Bird’s-Eye View of Population Status
      Through the eBird citizen scientist program, millions of birders have recorded their observations of different species and submitted checklists to the Cornell Lab of Ornithology. Through a partnership with NASA, the lab has now used this data to model and map bird population trends for nearly 500 North American species.
      Led by Alison Johnston of the University of St. Andrews in Scotland, the researchers reported that 75% of bird species in the study are declining at wide-range scales. And yet this study has some good news for birds. The results, published in Science in May, offer insights and projections that could shape the future conservation of the places where birds make their homes.
      “This project demonstrates the power of merging in situ data with NASA remote sensing to model biological phenomena that were previously impossible to document,” said Keith Gaddis, NASA’s Biological Diversity and Ecological Forecasting program manager at the agency’s headquarters in Washington, who was not involved in the study.  “This data provides not just insight into the Earth system but also provides actionable guidance to land managers to mitigate biodiversity loss.”
      Rock wren in Joshua Tree National Park. National Park Service / Jane Gamble A team from Cornell, the University of St. Andrews, and the American Bird Conservancy used land imaging data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to distinguish among such specific bird habitats as open forests, dense shrublands, herbaceous croplands, and forest/cropland mosaics. They also drew on NASA weather information and water data that matched the dates and times when birders made their reports.
      When combined with a 14-year set of eBird checklists — 36 million sets of species observations and counts, keyed directly to habitats — the satellite data gave researchers almost a strong foundation to produce a clear picture of the health of bird populations. But there was one missing piece.
      Wrestling with Wren Data
      While some eBird checklists come from expert birders who’ve hiked deep into wildlife preserves, others are sent in by novices watching bird feeders and doing the dishes. This creates what Cornell statistician Daniel Fink described as “an unstructured, very noisy data set,” complete with gaps in the landscape that birders did not reach and, ultimately, some missing birds.
      To account for gaps where birds weren’t counted, the researchers trained machine learning models to fill in the maps based on the remote sensing data. “For every single species — say the rock wren — we’ve created a simulation that mimics the species and a variety of ways that it could respond to changes in the environment,” Johnston said. “Thousands of simulations underlie the results we showed.”
      CornellLab eBird The researchers achieved unprecedented resolution, zeroing in on areas 12 miles by 12 miles (27 km by 27 km), the same area as Portland, Oregon. This new population counting method can also be applied to eBird data from other locations, Fink said. “Now we’re using modeling to track bird populations — not seasonally through the year, but acrossthe years — a major milestone,” he added.
      “We’ve been able to take citizen science data and, through machine learning methodology, put it on the same footing as traditionally structured surveys, in terms of the type of signal we can find,” said Cornell science product manager Tom Auer. “It will increase the credibility and confidence of people who use this information for precise conservation all over the globe.”
      The Up Side
      Since 1970, North America has lost one-quarter of its breeding birds, following a global trend of declines across species. The causes range from increased pollution and land development to changing climate and decreased food resources. Efforts to reverse this loss depend on identifying the areas where birds live at highest risk, assessing their populations, and pinpointing locations where conservation could help most.
      For 83% of the reported species in the new study, the decline was greatest in spots where populations had previously been most abundant — indicating problems with the habitat.
      “Even in species where populations are declining a lot, there are still places of hope, where the populations are going up,” Johnston said. The team found population increases in the maps of 97% of the reported species. “That demonstrates that there’s opportunity for those species.”
      “Birds face so many challenges,” said Cornell conservationist Amanda Rodewald. “This research will help us make strategic decisions about making changes that are precise, effective, and less costly. This is transformative. Now we can really drill in and know where specifically we’re going to be able to have the most positive impact in trying to stem bird declines.”
      By Karen Romano Young
      NASA Headquarters, Washington
      Share








      Details
      Last Updated Jun 25, 2025 Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      1 week ago
      1 min read From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks.


      Article


      1 week ago
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
    • By European Space Agency
      Today, the European Space Agency’s Proba-3 mission unveils its first images of the Sun’s outer atmosphere – the solar corona. The mission’s two satellites, able to fly as a single spacecraft thanks to a suite of onboard positioning technologies, have succeeded in creating their first ‘artificial total solar eclipse’ in orbit. The resulting coronal images demonstrate the potential of formation flying technologies, while delivering invaluable scientific data that will improve our understanding of the Sun and its enigmatic atmosphere.
      View the full article
    • By European Space Agency
      Video: 00:01:40 Proba-3 artificially created what is normally a rare natural phenomenon: a total solar eclipse.
      In a world first, ESA’s Proba-3 satellites flew in perfect formation, blocking the Sun’s bright disc to reveal its fiery corona. This enigmatic outer layer burns millions of degrees hotter than the Sun’s surface and drives the solar storms that can disrupt life on Earth.
      With its first artificial eclipse, Proba-3 has captured detailed images of this mysterious region, offering scientists new insights into our star’s behaviour.
      Read the full story here.
      Access the related broadcast qality footage. 
      View the full article
    • By European Space Agency
      Thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun’s poles from outside the ecliptic plane. Solar Orbiter’s unique viewing angle will change our understanding of the Sun’s magnetic field, the solar cycle and the workings of space weather. 
      View the full article
    • By NASA
      2 Min Read June’s Night Sky Notes: Seasons of the Solar System
      Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      Here on Earth, we undergo a changing of seasons every three months. But what about the rest of the Solar System? What does a sunny day on Mars look like? How long would a winter on Neptune be? Let’s take a tour of some other planets and ask ourselves what seasons might look like there.
      Martian Autumn
      Although Mars and Earth have nearly identical axial tilts, a year on Mars lasts 687 Earth days (nearly 2 Earth years) due to its average distance of 142 million miles from the Sun, making it late autumn on the red planet. This distance and a thin atmosphere make it less than perfect sweater weather. A recent weather report from Gale Crater boasted a high of -18 degrees Fahrenheit for the week of May 20, 2025.
      Credit: NASA/JPL-Caltech Seven Years of Summer
      Saturn has a 27-degree tilt, very similar to the 25-degree tilt of Mars and the 23-degree tilt of Earth. But that is where the similarities end. With a 29-year orbit, a single season on the ringed planet lasts seven years. While we can’t experience a Saturnian season, we can observe a ring plane crossing here on Earth instead. The most recent plane crossing took place in March 2025, allowing us to see Saturn’s rings ‘disappear’ from view.
      A Lifetime of Spring
      NASA Hubble Space Telescope observations in August 2002 show that Neptune’s brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet’s southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune’s rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble’s Wide Field and Planetary Camera 2. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison) Even further away from the Sun, each season on Neptune lasts over 40 years. Although changes are slower and less dramatic than on Earth, scientists have observed seasonal activity in Neptune’s atmosphere. These images were taken between 1996 and 2002 with the Hubble Space Telescope, with brightness in the southern hemisphere indicating seasonal change.
      As we welcome summer here on Earth, you can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find even more fun activities and resources like this model on NASA’s Wavelength and Energy activity. 
      View the full article
  • Check out these Videos

×
×
  • Create New...