Jump to content

NASA’s Scientists and Volunteers Tackle the October 14 Solar Eclipse


NASA

Recommended Posts

  • Publishers
3 Min Read

NASA’s Scientists and Volunteers Tackle the October 14 Solar Eclipse

A crescent of bright white light surrounds all but one edge of the black Moon. About halfway along that dark edge is a small spot of sunlight.
In this image captured during the October 14 annular solar eclipse we can see that the disk of the Sun was almost totally blocked by the smaller dark Moon. Between the horns of the crescent is a Baily’s Bead, a spot of sunlight peeking through a valley on the Moon’s apparent edge.
Credits:
Clinton Lewis, West Kentucky University

Did you see October 14th’s solar eclipse? Most of the time we can easily forget that we are on a planet spinning and orbiting in space with other celestial bodies. Watching the Moon move across the face of the Sun reminds us of our place in the solar system. 

Several NASA science teams and many NASA volunteers used the October 14 eclipse to collect data and test observation protocols, software, hardware, and logistics. They met enthusiastic crowds of people taking in the spectacle and making unique observations. The October eclipse was an “annular” eclipse, meaning that some sunlight always leaked around the edges of the moon. The next solar eclipse, on April 8, 2024, will be a total eclipse. Total eclipses are rare scientific opportunities, so NASA teams used the October eclipse to practice and prepare for the upcoming April eclipse.

In New Mexico, the annual Albuquerque International Balloon Fiesta rolled right into an Annular Eclipse event! An estimated 100,000 people took in the view of the annular eclipse of the Sun from Albuquerque, which was directly on the path where the eclipse reached its maximum – the path of annularity.

On a dry and dusty open space, a huge crowd of people has gathered, both standing and sitting, many looking up at the sky. The sky above is blue, with some wispy clouds down by the horizon. On the far left some white tent roofs are visible. In the distance on the right we can see a partially inflated red hot air balloon, resting on the ground.
The crowd gathered for the Albuquerque International Balloon Fiesta and annular eclipse.
Credit: Heather Fischer
4566ace2-7846-4951-8196-f3fd0b099ca9.jpe
The 3-D NASA logo sits outside an exhibit tent at the Albuquerque Balloon fiesta and subsequent eclipse viewing event.
Credit: Heather Fischer

Elsewhere in New Mexico, the Eclipse Soundscapes team gathered in the Randall Davey Audubon Center & Sanctuary in Sante Fe. The project team deployed eight AudioMoth recording devices the day before the eclipse and retrieved them the day after the eclipse to support research on whether or not eclipses affect life – and sounds – on Earth.  

They also recruited staff and visitors to the nearby Valles Caldera National Preserve to participate in Eclipse Soundscapes as Observers. Many folks used the prompting worksheets – and eclipse glasses – provided by Eclipse Soundscapes to record and report their multisensory experience of the eclipse. 

A bearded man in a baseball hat smiles at the camera while he holds up an AudioMoth recording device, which is a small rectangular device about half the size of a cell phone. Next to him, a woman holding a pen and paper covered in notes. She’s also looking at the camera and smiling. The two are under an evergreen trees and surrounded by shrubs with little, yellowing leaves.
Eclipse Soundscapes Team members Dr. Henry “Trae” Winter and MaryKay Severino, getting ready to deploy an AudioMoth device at the Randall Davey Audubon Center & Sanctuary in Sante Fe, NM
Credit: MaryKay Severino
Two women sit on folding camp chairs outside. Behind them is a wooden fence and a small barn built of logs. The grass in the field is golden rather than green. The woman on the left has straight blonde hair and she’s looking at a paper in her hands. The woman on the right, who has brown hair and is wearing eclipse glasses, is looking up at the sky. Both are smiling. A black and brown dog sits on the ground between the two women.
Valles Caldera Park visitors used the Eclipse Soundscapes worksheet and eclipse glasses distributed by Park Rangers to learn more about the Eclipse Soundscapes project, take notes on what nature changes they heard, saw, or felt during the annular eclipse, and then use a QR code to submit their observations to the project. 
Credit: MaryKay Severino
A crowd of people, including families with young children, gathers on a broad plaza paved with concrete tiles. The people are in small groups, some with lawn chairs, some sitting on the tiles. The sky is a cloudless blue.
The SunSketcher team gathered in Odessa, TX, together with other eclipse chasers,  to test their new cell phone app. This app will allow volunteers to help measure the size and shape of the Sun during April’s total eclipse.
Credit: Clinton Lewis, West Kentucky University
A crescent of bright white light surrounds all but one edge of the black Moon. About halfway along that dark edge is a small spot of sunlight.
In this image captured during the October 14 annular solar eclipse we can see that the disk of the Sun was almost totally blocked by the smaller dark Moon. Between the horns of the crescent is a Baily’s Bead, a spot of sunlight peeking through a valley on the Moon’s apparent edge.
Credit: Clinton Lewis, West Kentucky University

The Dynamic Eclipse Broadcasting Initiative was also on the move. Project leader Bob Baer, student Nathan Culli, and collaborator Mike Kentrianakis gathered in Midland, TX, for a good view of the annular eclipse. They tested their set-up and managed to successfully broadcast their telescope view from sunny Texas back to their home institution of Southern Illinois University in cloudy Carbondale. 

On a parking lot near white and grey three-floor residential buildings two men are hunched over telescopes and computers, respectively. Square-sided equipment bags lie open on the pavement. The shadows cast on the ground are long, indicating it is the beginning or end of a long day.
The DEB Initiative set up for testing pre-eclipse.
Credit: Bob Baer and Mike Kentrianakis
baer-ussie.jpeg?w=600
Members of the DEB Initiative under their reflective tent in Midland, TX, ready to broadcast their telescope view of the eclipse back to the stadium at their home institution of Southern Illinois University in Carbondale.
Credit: Bob Baer and Mike Kentrianakis.
img-7235-01.jpeg?w=1280
Members of the Salt Lake Astronomical Society, NASA volunteers and others gather in anticipation of the October 14, 2023 annular eclipse.
Credit: NASA volunteer Danny Roylance

All in all, the day was a great success! On to April 8, 2024 and the total eclipse!

More information: 

Curious about the other eclipse science projects that you can join? Check out this website https://science.nasa.gov/heliophysics/programs/citizen-science/

and this cool video: https://twitter.com/i/status/1713910355842257261 

Want to know more and keep up to date on all the Heliophysics Big Year events? Follow @NASASun on X. 

Want another chance to see the October 14 annular eclipse? Check out the recording of NASA’s live stream of the eclipse at https://twitter.com/i/broadcasts/1zqKVqymlNPxB

M

Websites:

https://debinitiative.org/

https://eclipsesoundscapes.org/

https://sunsketcher.org/

NASA’s Citizen Science Program:
Learn about NASA citizen science projects
Follow on X
Follow on Facebook 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Develops Process to Create Very Accurate Eclipse Maps
      New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
      For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
      Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
      The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
      “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow  — the umbra,” said Wright.
      A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
      The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
      A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
      A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
      Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
      This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
      For more about eclipses, refer to:
      https://science.nasa.gov/eclipses
      By Ernie Wright and Susannah Darling
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Nancy Neal-Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-0039
      nancy.n.jones@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      3 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      4 weeks ago
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…


      Article


      4 weeks ago
      View the full article
    • By NASA
      NASA/Frank Michaux On Aug. 21, 2024, engineers and technicians deployed and tested NASA’s Europa Clipper giant solar arrays. Each array measures about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high.
      Europa Clipper is scheduled to launch Oct. 10, 2024, on the first mission to conduct a detailed science investigation of Jupiter’s moon Europa. Scientists predict Europa has a salty ocean beneath its icy crust that could hold the building blocks necessary to sustain life.
      Learn how this spacecraft’s solar arrays will power flybys.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ 23 Min Read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The Next Full Moon is a Partial Lunar Eclipse; a SuperMoon; the Corn Moon; the Harvest Moon; the Fruit or Barley Moon; the end of Ganesh Chaturthi and the start of Pitru Paksha; Madhu Purnima; the Mid-Autumn, Mooncake, or Reunion Festival Moon; Chuseok; and Imomeigetsu or the Potato Harvest Moon.
      The full Moon will be Tuesday night, September 17, 2024, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars will show this full Moon on Wednesday based on Greenwich or Universal Time. The Moon will appear full for about three days, from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the Earth’s partial shadow at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with only the top 8 percent of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      The phases of the Moon for September 2024. NASA/JPL-Caltech This will be a supermoon. The term “supermoon” was coined by astrologer Richard Nolle in 1979 as either a new or full Moon that occurs when the Moon is within 90% of its closest to Earth. Since we can’t see new Moons, what has the public’s attention are full supermoons, the biggest and brightest Moons of the year. Although different publications use different thresholds for deciding which full Moons qualify, most agree this will be the second of four consecutive supermoons (effectively tied with the full Moon in October for the closest of the year).
      The Maine Farmer’s Almanac first published “Indian” names for the full Moons in the 1930s and these names have become widely known and used. According to this almanac, as the full Moon in September the Algonquin tribes in what is now the northeastern USA called this the Corn Moon, as this was the time for gathering their main staple crops of corn, pumpkins, squash, beans, and wild rice.
      As the full Moon closest to the autumnal equinox, this is the Harvest Moon. The first known written use of this name in the English language (per the Oxford English Dictionary) was in 1706. During the fall harvest season farmers sometimes need to work late into the night by moonlight. On average moonrise is about 50 minutes later each night. Around the Harvest Moon this time is shorter, about 25 minutes for the latitude of Washington, DC, and only 10 to 20 minutes farther north in Canada and Europe.
      Other European names for this full Moon are the Fruit Moon, as a number of fruits ripen as the end of summer approaches, and the Barley Moon, from the harvesting and threshing of barley.
      For Hindus, this full Moon marks the end of Ganesh Chaturthi and the start of Pitru Paksha. Ganesh Chaturthi (also called Vinayaka Chaturthi or Vinayaka Chavithi) is a 10 or 11 day festival honoring the god Ganesha that ends with this full Moon. Ganesha is easily recognized by his elephant head and is worshiped as the god of beginnings, wisdom, arts and sciences, and as the remover of obstacles. Throughout the festival celebrants offer food, sweets, and prayers to clay statues of Ganesha at home and on public stages. Traditions include chanting of Vedic hymns and Hindu texts, prayers, and fasting. On the last day (near the full Moon), people carry the statues to a nearby river or ocean and immerse them. As the clay dissolves, Ganesha is believed to return to his parents, the god Shiva and goddess Parvati, on Mount Kailash.
      Pitru Paksha (fortnight of the ancestors) is a 15 days long festival that ends with the new Moon. During this time, Hindus honor their ancestors (pitrs) with rituals, food offerings, and scripture reading. Pitru Paksha is also known by a number of other names.
      For some Buddhists in Bangladesh and Thailand this full Moon is Madhu Purnima, the Honey Full Moon Festival or the Honey-offering Festival. The legend is that when the Buddha was trying to bring peace between two factions in a forest, an elephant and a monkey fed him, with the elephant offering fruit and the monkey offering a honeycomb.
      In China, Vietnam, and some other Asian countries, this full Moon corresponds with the Mid-Autumn Festival, a traditional harvest festival. In China, other names for this festival include the Moon Festival, the Mooncake Festival, and the Reunion Festival (with wives visiting their parents then returning to celebrate with their husbands and his parents). Part of the festival includes offerings to the Moon Goddess Chang’e (the name the China National Space Agency gives their lunar missions).
      In Korea, this full Moon corresponds with the harvest festival Chuseok, during which Koreans return to their traditional hometowns to pay respect to the spirits of their ancestors.
      This full Moon corresponds with the first of two Japanese Tsukimi or “Moon-Viewing” festivals, also called Imomeigetsu (which translates as “potato harvest Moon”) because of the tradition of offering sweet potatoes to the Moon. These festivities have become so popular that they are often extended for several days after the full Moon.
      In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the eighth month of the Chinese year of the Dragon and Rabi’ al-Awwal in the Islamic calendar, the month in which many Muslims celebrate Mawlid, the birth of the Prophet Muhammad. This full Moon is near the middle of Elul in the Hebrew calendar. Elul is a time of preparation for the High Holy Days of Rosh Hashanah and Yom Kippur. Customs include granting and asking others for forgiveness as well as beginning or ending all letters with the wish that the recipient will have a good year.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Go out and observe the Moon, enjoy this harvest season (including corn, fruit, and sweet potatoes, and honey), remember your ancestors, stay in touch with your parents, and forgive and ask forgiveness. Here’s wishing you a good year!
      Comet C/2023 A3 (Tsuchinshan-ATLAS)
      Pay attention to the news about Comet C/2023 A3 (Tsuchinshan-ATLAS)! There are a number of “ifs” so we don’t like to raise expectations. Similar visitors from the Oort Cloud have broken apart and fizzled out as they passed close to the Sun. If this comet survives its passage by the Sun (closest approach on September 27, 2024) and if the amount of gas and dust it gives off does not decrease significantly, this might be one of the best comets in a long time. If it strongly scatters sunlight towards the Earth it might even be visible in the glow of dusk just after its closest approach to Earth on October 12.
      From the Washington, DC area and similar latitudes, this comet will be above the horizon before morning twilight begins from September 22 through October 4, with the current brightness curve predicting a steady increase in brightness from about visual magnitude 4 to near 3 (the smaller the number, the brighter the object). As it brightens it may be visible under dark sky conditions and even more impressive through binoculars or a telescope, although towards the start and end of this period it may be too low on the horizon to see when the sky is completely dark.  
      Between about October 4 and October 11 the Sun’s glare will mask visibility from the Northern Hemisphere. Check your local news or web sites for viewing information for your latitude. For example, Sky and Telescope reports that Southern Hemisphere skywatchers should fare better.
      Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM EDT. Around closest approach the comet’s brightness is predicted to peak at about visual magnitude 3 (similar to many stars). Forward scattering might increase the brightness significantly, possibly as high as -1 (brighter than every star except Sirius). How bright the comet actually appears will depend upon how much gas and dust it is giving off, which can change quickly. Also, brightness comparisons between comets and stars can be misleading as the light of the comet is spread out making it less distinct than a star with the same brightness.
      The best time to look should be the evenings on and shortly after October 12 with the comet above the western horizon after sunset. The evening of October 12 the comet will be 4 degrees above the western horizon as evening twilight ends, similar in altitude and to the right of Venus. The comet is expected to dim as it moves away from the Earth, but will appear higher in a darker sky and set later each evening, which could make it easier to see. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. The brightness will decrease to about magnitude 6 by the end of October.
      Meteor Showers
      During this lunar cycle four minor meteors showers are predicted to peak at 5 or fewer visible meteors per hour (under ideal viewing conditions), making them basically not visible from our light-polluted urban areas.
      Evening Sky Highlights
      On the evening of Tuesday, September 17 (the evening of the full Moon), as twilight ends (at 8:10 PM EDT), the rising Moon will be 11 degrees above the east-southeastern horizon with Saturn to the upper right at 14 degrees above the horizon. Later in the evening the partial shadow of the Earth will cover a small upper part of the Moon. Bright Venus will be 2 degrees above the west-southwestern horizon with the star Spica on the horizon to the lower left. The bright star closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 87 degrees above the western horizon. Vega is part of the Summer Triangle along with Deneb and Altair. It is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left along the west-southwestern horizon, appearing slightly higher each evening. The waxing Moon will pass by Venus on October 5, Antares on October 7, and Saturn on October 14. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM. Assuming it survives its pass by the Sun on September 27 and depending upon how much gas and dust it gives off, it could be a good show in the evenings on and after October 12. See the comet summary above and keep an eye on the news for updates on this comet.
      By the evening of Thursday, October 17 (the evening of the full Moon after next), as twilight ends (at 7:24 PM EDT), the rising Moon will be 9 degrees above the eastern horizon. Saturn will be 27 degrees above the southeastern horizon. Bright Venus will be 6 degrees above the west-southwestern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 22 degrees above the western horizon. The bright star closest to overhead will be Deneb at 80 degrees above the northeastern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.
      Morning Sky Highlights
      On the morning of Wednesday, September 18 (the morning of the night of the full Moon), as twilight begins (at 5:55 AM EDT), the setting full Moon will be 15 degrees above the west-southwestern horizon. The brightest planet in the sky will be Jupiter at 71 degrees above the south-south eastern horizon. Near Jupiter will be Mars at 61 degrees above the east-southeastern horizon. Saturn will be below the Moon at 1 degree above the western horizon. The bright star appearing closest to overhead will be Capella, the brightest star in the constellation Auriga the charioteer, at 80 degrees above the northeastern horizon. Although we see Capella as a single star (the 6th brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 lightyears from us.
      As this lunar cycle progresses, Jupiter, Mars, Saturn, and the background of stars will appear to shift westward each evening. After September 19 Saturn set before morning twilight begins. The waning Moon will pass by the Pleiades star cluster on September 22, Mars on September 25, Pollux on September 26, and Regulus on September 29. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins from September 22 through October 4. Comets are notoriously difficult to predict, but if the amount of gas and dust it gives off remains constant it should increase in brightness each morning. See the comet summary above and keep an eye on the news for updates on this comet.
      By the morning of Thursday, October 17 (the morning of the full Moon after next), as twilight begins (at 6:22 AM EDT), the setting full Moon will be 11 degrees above the western horizon. The brightest planet in the sky will be Jupiter at 63 degrees above the west-southwestern horizon. Mars will be at 72 degrees above the south-southeastern horizon. The bright star appearing closest to overhead will be Pollux, the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini, at 75 degrees above the southeastern horizon. Pollux is an orange tinted star about 34 lightyears from Earth. It is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.
      Detailed Daily Guide
      Here for your reference is a day-by-day listing of celestial events between now and the full Moon on October 17, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Saturday night, September 14, is International Observe the Moon Night! See https://moon.nasa.gov/observe-the-moon-night/about/overview/ for more information.
      Our 24 hour clock is based on the average length of the solar day. Solar noon on Sunday, September 15 to solar noon on Monday, September 16, will be the shortest solar day of the year, 23 hours, 59 minutes, and 38.6 seconds long.
      Monday night into Tuesday morning, September 16 to 17, Saturn will appear near the full Moon. As evening twilight ends (at 8:12 PM EDT) Saturn will be 6 degrees to the left of the Moon. When the Moon reaches its highest for the night (at 12:17 AM) Saturn will be 4 degrees to the upper left. By the time morning twilight begins (at 5:54 AM) the Moon will be 1 degree above the west-southwestern horizon with Saturn 1 degree above the Moon. For parts of western North America and across the Pacific Ocean towards Australia the Moon will pass in front of Saturn. See http://lunar-occultations.com/iota/planets/0917saturn.htm for a map and information on the areas that will see this occultation.
      Tuesday morning, September 17, will be the last morning that Mercury will be above the horizon as morning twilight begins (at 5:54 AM EDT).
      As mentioned above, the full Moon will be Tuesday night, September 17, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars are based on Greenwich or Universal Time and will show this full Moon on Wednesday. The Moon will appear full for about three days from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the partial shadow of the Earth at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with just the top 8.4% of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      This will be the second of four consecutive supermoons, appearing larger than last month’s supermoon and effectively tied with the full Moon in October for the closest full Moon of the year.
      Tuesday and Wednesday evenings, September 17 and 18, the star Spica will appear a little over 2 degrees from the bright planet Venus. On Tuesday evening as evening twilight ends (at 8:10 PM EDT) Spica will be to the lower left of Venus and on the verge of setting on the west-southwestern horizon. Wednesday evening Spica will be a few hundredths of a degree closer and will appear below Venus, but will set about 2 minutes before evening twilight ends.
      Wednesday morning September 18, at 9:29 AM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      Thursday morning, September 19, will be the last morning the planet Saturn will be above the western horizon as morning twilight begins.
      If you are interested in spotting the planet Neptune through a telescope, Friday evening, September 20, will be when it will be at its closest and brightest for the year. Neptune will reach its highest in the sky early Saturday morning (at 1:02 AM EDT).
      Saturday night into Sunday morning, September 21 to 22, the Pleiades star cluster will appear near the waning gibbous Moon. The Pleiades will be 5 degrees to the lower left as they rise on the east-northeastern horizon (at 9:23 PM EDT), 1.5 degrees to the upper left by the time the Moon reaches its highest for the night (at 4:44 AM), and less than 1 degree to the upper left as morning twilight begins (at 5:59 AM). The Moon will actually pass through the Pleiades (at about 8 AM) when daylight will mask these stars from view.
      Sunday morning, September 22, will be the first morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting it at visual magnitude 4. Unless it breaks apart, this comet is likely to brighten each morning until October 4 (after which it will no longer be above the horizon before twilight begins).
      Sunday morning, September 22, at 8:44 AM EDT, will be the autumnal equinox, the astronomical end of summer and start of fall.
      Monday night into Tuesday morning, September 23 to 24, the bright planet Jupiter will appear to the lower right of the waning half-full Moon. Jupiter will be 6 degrees to the lower right as it rises on the east-northeastern horizon (at 10:54 PM EDT). Jupiter will shift slightly clockwise as it moves away from the Moon.
      Thursday afternoon, September 24, the waning Moon will appear half-full as it reaches its last quarter at 2:50 PM EDT (when we can’t see it).
      Wednesday morning, September 25, the planet Mars will appear below the waning crescent Moon. Mars will be 6 degrees below the Moon as it rises on the east-northeastern horizon (at 12:16 AM EDT). Mars will be 5 degrees to the lower right as morning twilight begins (at 6:01 AM).
      Thursday morning, September 26, the star Pollux (the brighter of the twin stars in the constellation Gemini the twins) will appear near the waning crescent Moon. Pollux will be 3 degrees to the lower left as it rises on the northeastern horizon (at 12:47 AM EDT) and will be 2 degrees to the upper left by the time morning twilight begins (at 6:02 AM).
      Friday afternoon, September 27, at around 2 PM EDT, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to the Sun. This comet has an inbound orbital period of millions of years and may gain enough energy from this flyby of the Sun to leave the solar system forever.
      Sunday morning, September 29, the star Regulus will appear near the waning crescent Moon. As Regulus rises on the east-northeastern horizon (at 4:01 AM EDT) it will be 2.5 degrees to the lower right of the Moon. Morning twilight will begin 2 hours later (at 6:05 AM) with Regulus 3 degrees to the right.
      Monday afternoon, September 30, the planet Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth, it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of twilight on the west-southwestern horizon towards the end of October (depending upon viewing conditions).
      Wednesday, October 2, at 2:46 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and is usually not visible. For much of the Pacific Ocean as well as the southern part of South America, part of Antarctica, and a thin slice of the southwestern Atlantic, the Moon will block some of the Sun in a partial eclipse. For a narrow strip from the Pacific south of the Hawaiian Islands across the Pacific, part of Chile and Argentina, and into the southwestern Atlantic Ocean, the Moon will actually pass in front of the Sun, blocking most of it from view in an annular solar eclipse. Because the Moon will be at apogee (its farthest from the Earth) just 70 minutes later (at 3:56 PM) it will not block the entire Sun from view and this will not be a total solar eclipse.
      The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Sundown on Wednesday, October 2, will be the start of Rosh Hashanah (the Head of the Year), the two-day Jewish New Year celebration that will end at sundown on Friday, October 4. Rosh Hashanah is the first of a series of holidays in Tishrei, the first month of the Hebrew calendar. The tenth day of Tishrei is Yom Kippur, the Day of Atonement. The 10 days from Rosh Hashanah to Yom Kippur, called the Days of Awe, are a time to reflect on the mistakes of the past year and make resolutions for the new year. The fifteenth day of Tishrei (close to the full Moon after next) is the start of the 7-day Sukkot holiday.
      The ninth month of the Chinese year of the Dragon starts on Thursday, October 3.
      In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday evening, October 3, will probably mark the beginning of Rabiʽ al-Thani, also known as Rabi’ al-Akhirah.
      Friday, October 4, will be the last morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting a visual magnitude near 3, similar in brightness to many visible stars. It may be visible to the naked eye under dark sky conditions and even more impressive through binoculars or a telescope.
      Saturday evening, October 5, you may be able to see the thin waxing crescent Moon 4.5 degrees to the lower left of the bright planet Venus. As evening twilight ends (at 7:41 PM EDT) the Moon will be a degree above the west-southwestern horizon. The Moon will set first 14 minutes later (at 7:55 PM).
      Monday evening, October 7, the bright star Antares will appear 2 degrees to the right of the waxing crescent Moon. As evening twilight ends (at 7:38 PM EDT) the Moon will be 11 degrees above the southwestern horizon. Antares will set first about 20 minutes later (at 9 PM).
      Thursday afternoon, October 10, the Moon will appear half-full as it reaches its first quarter at 2:55 PM EDT.
      Saturday morning, October 12, at 11:10 AM, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth. If it survives its pass by the Sun this will likely be when it will be near its brightest. Although it will be on the horizon as evening twilight ends on Friday, our first chance to see it above the horizon as it emerges from the glow of dusk likely will be Saturday evening, when the comet will be 4 degrees above the western horizon as evening twilight ends (at 7:31 PM EDT), similar in altitude and to the right of Venus. Over the next few nights the comet will likely dim as it moves away from the Earth, but also appear higher in the sky and set later each evening, giving us more time and darker skies to look for this comet. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. Current brightness curves predict it will dim quickly and will be below magnitude 6 by the end of October. How bright the comet will be and how quickly it actually dims will depend upon the gas and dust it is giving off, which can vary quickly and unpredictably, but it could be a good show in the evenings after October 12.
      Monday evening, October 14, the planet Saturn will appear near the waxing gibbous Moon. As evening twilight ends (at 7:28 PM EDT) Saturn will be 4 degrees to the upper right. The Moon will reach its highest for the night about 3.5 hours later (at 10:53 PM) with Saturn 5 degrees to the lower right. The pair will continue to separate, with Saturn setting first 5 hours after that (at 4:09 AM). For parts of Southern Asia and Africa the Moon will block Saturn from view, see http://lunar-occultations.com/iota/planets/1014saturn.htm for a map and information on the areas that will acually see this occultation.
      Wednesday evening, October 16, at 8:57 PM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      The full Moon after next will be Thursday morning, October 17, 2024, at 7:26 AM EDT. This will be late Wednesday night in the International Date Line West time zone and early Friday morning from New Zealand Time eastwards to the International Date Line. This will be the third of four consecutive supermoons (and the brightest by a tiny margin). The Moon will appear full for about 3 days around this time, from Tuesday evening through Friday morning.
      Keep Exploring Discover More Topics From NASA
      Night Sky Network



      Explore the Night Sky



      Tips & Guides



      Skywatching


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
      Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
      The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
      Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
      The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
      When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
      These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
      For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
      “I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
      Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
      “It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
      The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
      The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
      “It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
      What’s Next for Plume Testing
      Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
      There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
      For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-122
      Share
      Details
      Last Updated Sep 11, 2024 Related Terms
      Mars Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
      Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      Mars was once a very wet planet as is evident in its surface geological features.…
      Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist David Bowen works on “tele-present wind,” featuring grass stalks that move in response to Martian wind data previously collected by NASA’s Perseverance rover mission. Behind him sits JPL data systems architect Rishi Verma.NASA/JPL-Caltech Works in ‘Blended Worlds: Experiments in Interplanetary Imagination,’ an exhibit in Glendale, California, help shrink the universe into something tangible.
      The universe is vast and filled with countless worlds, but a new exhibit at the Brand Library & Art Center in Glendale, California, aims to shrink time and space. For “Blended Worlds: Experiments in Interplanetary Imagination,” artists collaborated with scientists and engineers from NASA’s Jet Propulsion Laboratory to create cross-disciplinary works that help illuminate the universe by bringing art and science together.
      On view from Sept. 21, 2024, to Jan. 4, 2025, the exhibition is part of “PST ART: Art & Science Collide,” an event presented by the Getty and involving more than 70 exhibitions from museums and institutions across Southern California exploring the intersection of art and science.
      “The magic of art is that it enhances our experiences and interactions with the world — and in this case, our universe,” said Dr. Laurie Leshin, director of JPL in Southern California. “We’re honored to work with great artists to bring the wonders of space to our community through this exhibition, which invites us all to be part of a grand journey of exploration and discovery.”
      The 126 grass stalks of “tele-present wind” are attached to mechanical tilting devices that move in response to Martian wind data.NASA/JPL-Caltech David Bowen’s installation “tele-present wind” features grass stalks attached to tilting mechanical devices that move in response to Martian wind data previously collected by NASA’s Perseverance rover mission. Helping make the effort possible were Rishi Verma, a data systems architect at JPL, and José Antonio Rodríguez-Manfredi, the principal investigator of the Mars Environmental Dynamics Analyzer (MEDA) system on Perseverance.
      For “Seismic Percussion,” artist Moon Ribas creates an interplanetary drum score by translating seismic data from Earth, the Moon, and Mars. For Mars data, JPL’s Verma worked with Nobuaki Fuji of the Institut de Physique du Globe de Paris, who collaborated on NASA’s now-retired InSight lander. Ceri Nunn, a JPL planetary scientist, assisted with moonquake data.
      Also featured is a handwritten version of U.S. Poet Laureate Ada Limón’s “In Praise of Mystery: A Poem for Europa,” the poem she dedicated to NASA’s Europa Clipper mission, which is targeting an October launch and will make multiple flybys of Jupiter’s icy moon Europa. The poem has been etched onto a metal plate on the spacecraft and will ride with the orbiter on its long journey.
      Additional works allow visitors to experience Earth’s wonders through scents, use sound to convey the vast distances between our planet and those beyond our solar system, and blend heartbeats and other Earthly sounds with sonified data from Europa’s magnetic field.  
      “We were looking to create imaginative opportunities for people to connect with each other as they connect with the awe-inspiring science being conducted today,” said David Delgado, a cultural strategist and the project lead at JPL. “I know this experience has really opened the eyes of everyone collaborating on the project, and we hope it does the same for people who come to see ‘Blended Worlds.’”
      As part of PST ART, a number of public programs and community events will also accompany the “Blended Worlds” gallery exhibition, including “Blended Worlds: An Evening of Art, Theater, and Science” hosted by Reggie Watts at the Alex Theatre in Glendale on Oct. 5, and “Earth Data: The Musical,” an original musical developed by Theater Arts at Caltech exploring the challenges of climate research and science as a human pursuit at Caltech’s Ramo Auditorium Nov. 1 to 3.
      Artists’ collaborations with JPL and the display of their works at Glendale’s Brand Library were made possible by the generous support of the Glendale Arts and Culture Commission and the Glendale Library, Arts & Culture Trust.
      More About JPL
      A division of Caltech in Pasadena, California, JPL began in 1936 and ultimately built and helped launch America’s first satellite, Explorer 1, in 1958. By the end of that year, Congress established NASA and JPL became a part of the agency. Since then, JPL has managed such historic missions as Voyager, Galileo, Cassini, the Mars Exploration Rover program, the Perseverance Mars rover, and many more.
      More About Glendale Library, Arts & Culture
      Founded in 1907, the Glendale Library, Arts & Culture Department includes eight neighborhood libraries including the Brand Library & Art Center, a regional visual arts and music library and performance venue housed in the historic 1904 mansion of Glendale pioneer Leslie C. Brand, and the Central Library, a 93,000-square-foot center for individuals and groups to convene, collaborate, and create. The department also serves as the chief liaison to the Glendale Arts and Culture Commission which works to continually transform Glendale into an ever-evolving arts destination. Glendale Library Arts & Culture is supported in part through the efforts of the Glendale Library Arts & Culture Trust (GLACT). For more information visit GlendaleLAC.org, or contact Library, Arts & Culture at 818-548-2021 or via email at LibraryInfo@GlendaleCA.gov. Follow on Instagram, Facebook, and X at @MyGlendaleLAC.
      For more information about PST ART: Art & Science Collide, visit: pst.art
      News Media Contact
      Matthew Segal / Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-8307 / 626-314-4928
      matthew.j.segal@jpl.nasa.gov / melissa.pamer@jpl.nasa.gov
      2024-120
      Share
      Details
      Last Updated Sep 09, 2024 Related Terms
      Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 2 weeks ago 6 min read Work Is Under Way on NASA’s Next-Generation Asteroid Hunter
      Article 2 weeks ago 5 min read NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...