Jump to content

NASA’s Webb Makes First Detection of Heavy Element From Star Merger


Recommended Posts

  • Publishers
Posted

Webb’s study of the second-brightest gamma-ray burst ever seen reveals tellurium.

A team of scientists has used multiple space and ground-based telescopes, including NASA’s James Webb Space Telescope, NASA’s Fermi Gamma-ray Space Telescope, and NASA’s Neil Gehrels Swift Observatory, to observe an exceptionally bright gamma-ray burst, GRB 230307A, and identify the neutron star merger that generated an explosion that created the burst. Webb also helped scientists detect the chemical element tellurium in the explosion’s aftermath.

Image: Gamma-Ray Burst 230307A

Bright galaxies and other light sources in various sizes and shapes are scattered across a black swath of space: small points, hazy elliptical-like smudges with halos, and spiral-shaped blobs. The objects vary in color: white, blue-white, yellow-white, and orange-red. Toward the center right is a blue-white spiral galaxy seen face-on that is larger than the other light sources in the image. The galaxy is labeled “former home galaxy.” Toward the upper left is a small red point, which has a white circle around it and is labeled “GRB 230307A kilonova.”
This image from NASA’s James Webb Space Telescope NIRCam (Near-Infrared Camera) instrument highlights Gamma-Ray Burst (GRB) 230307A and its associated kilonova, as well as its former home galaxy, among their local environment of other galaxies and foreground stars. The GRB likely was powered by the merger of two neutron stars. The neutron stars were kicked out of their home galaxy and traveled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.
Image: NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick).

Other elements near tellurium on the periodic table – like iodine, which is needed for much of life on Earth – are also likely to be present among the kilonova’s ejected material. A kilonova is an explosion produced by a neutron star merging with either a black hole or with another neutron star.

“Just over 150 years since Dmitri Mendeleev wrote down the periodic table of elements, we are now finally in the position to start filling in those last blanks of understanding where everything was made, thanks to Webb,” said Andrew Levan of Radboud University in the Netherlands and the University of Warwick in the UK, lead author of the study.

While neutron star mergers have long been theorized as being the ideal “pressure cookers” to create some of the rarer elements substantially heavier than iron, astronomers have previously encountered a few obstacles in obtaining solid evidence.

Long Gamma-Ray Burst

Kilonovae are extremely rare, making it difficult to observe these events. Short gamma-ray bursts (GRBs), traditionally thought to be those that last less than two seconds, can be byproducts of these infrequent merger episodes. (In contrast, long gamma-ray bursts may last several minutes and are usually associated with the explosive death of a massive star.)

The case of GRB 230307A is particularly remarkable. First detected by Fermi in March, it is the second brightest GRB observed in over 50 years of observations, about 1,000 times brighter than a typical gamma-ray burst that Fermi observes. It also lasted for 200 seconds, placing it firmly in the category of long duration gamma-ray bursts, despite its different origin.

“This burst is way into the long category. It’s not near the border. But it seems to be coming from a merging neutron star,” added Eric Burns, a co-author of the paper and member of the Fermi team at Louisiana State University.

Opportunity: Telescope Collaboration

The collaboration of many telescopes on the ground and in space allowed scientists to piece together a wealth of information about this event as soon as the burst was first detected. It is an example of how satellites and telescopes work together to witness changes in the universe as they unfold. 

After the first detection, an intensive series of observations from the ground and from space, including with Swift, swung into action to pinpoint the source on the sky and track how its brightness changed. These observations in the gamma-ray, X-ray, optical, infrared, and radio showed that the optical/infrared counterpart was faint, evolved quickly, and became very red – the hallmarks of a kilonova.

“This type of explosion is very rapid, with the material in the explosion also expanding swiftly,” said Om Sharan Salafia, a co-author of the study at the INAF – Brera Astronomical Observatory in Italy. “As the whole cloud expands, the material cools off quickly and the peak of its light becomes visible in infrared, and becomes redder on timescales of days to weeks.”

Image: Killanova – Webb vs Model

Bright galaxies and other light sources in various sizes and shapes are scattered across a black swath of space: small points, hazy elliptical-like smudges with halos, and spiral-shaped blobs. The objects vary in color: white, blue-white, yellow-white, and orange-red. Toward the center right is a blue-white spiral galaxy seen face-on that is larger than the other light sources in the image. The galaxy is labeled “former home galaxy.” Toward the upper left is a small red point, which has a white circle around it and is labeled “GRB 230307A kilonova.”
This graphic presentation compares the spectral data of GRB 230307A’s kilonova as observed by NASA’s James Webb Space Telescope and a kilonova model. Both show a distinct peak in the region of the spectrum associated with tellurium, with the area shaded in red. The detection of tellurium, which is rarer than platinum on Earth, marks Webb’s first direct look at an individual heavy element from a kilonova.
Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI).

At later times it would have been impossible to study this kilonova from the ground, but these were the perfect conditions for Webb’s NIRCam (Near-Infrared Camera) and NIRSpec (Near-Infrared Spectrograph) instruments to observe this tumultuous environment. The spectrum has broad lines that show the material is ejected at high speeds, but one feature is clear: light emitted by tellurium, an element rarer than platinum on Earth.

The highly sensitive infrared capabilities of Webb helped scientists identify the home address of the two neutron stars that created the kilonova: a spiral galaxy about 120,000 light-years away from the site of the merger.

Prior to their venture, they were once two normal massive stars that formed a binary system in their home spiral galaxy. Since the duo was gravitationally bound, both stars were launched together on two separate occasions: when one among the pair exploded as a supernova and became a neutron star, and when the other star followed suit.

In this case, the neutron stars remained as a binary system despite two explosive jolts and were kicked out of their home galaxy. The pair traveled approximately the equivalent of the Milky Way galaxy’s diameter before merging several hundred million years later.

Scientists expect to find even more kilonovae in the future due to the increasing opportunities to have space and ground-based telescopes work in complementary ways to study changes in the universe. For example, while Webb can peer deeper into space than ever before, the remarkable field of view of NASA’s upcoming Nancy Grace Roman Space Telescope will enable astronomers to scout where and how frequently these explosions occur.

“Webb provides a phenomenal boost and may find even heavier elements,” said Ben Gompertz, a co-author of the study at the University of Birmingham in the UK. “As we get more frequent observations, the models will improve and the spectrum may evolve more in time. Webb has certainly opened the door to do a lot more, and its abilities will be completely transformative for our understanding of the universe.”

These findings have been published in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braun hbraun@stsci.edu , Christine Pulliamcpulliam@stsci.edi
Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Research results published in the journal Nature.

Related Information

Neutron Stars – https://universe.nasa.gov/stars/types/#otp_neutron_stars

Universe/Stars Basics – https://universe.nasa.gov/stars/basics/

Universe Basics https://universe.nasa.gov/universe/basics/

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA is marking progress in strengthening the agency’s small business partnerships, supply chain resiliency, and domestic space manufacturing capabilities.
      Under the agency’s enhanced Mentor-Protégé Program, NASA has announced the first Mentor-Protégé Agreement between L3Harris Technologies, a NASA large prime contractor, and Parametric Machining, Inc., a veteran-owned small business.
      This agreement will help advance NASA’s mission by fostering innovation and reinforcing the agency’s supply chain. As NASA continues to advance the Artemis campaign, deep space exploration, and aeronautics research, partnerships like this are essential in securing a resilient and efficient supplier base.
      “We are excited to facilitate the first agreement under the newly enhanced NASA Mentor-Protégé Program,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This agreement, and the many that will follow, promote domestic ingenuity and manufacturing and provide opportunities for small businesses to grow and thrive within NASA’s industrial base.”
      Through Mentor-Protégé Agreements, large prime contractors serve as mentors, offering technical and business development assistance to small business protégés. This collaboration not only enhances protégés’ capabilities but also provides mentors with a stronger, more reliable subcontracting base, enabling them to fill their supply chain gaps. Additionally, protégés gain potential prime and subcontract opportunities, enhanced technical capabilities, technical training, and long-term business growth.
      Relaunched in November 2024, the merit-based NASA Mentor-Protégé Program is designed to bolster small business development while strengthening NASA’s supply chain and industry base. By focusing on a targeted set of North American Industry Classification System codes, including research and development and aerospace manufacturing, NASA ensures that participating small businesses are well-positioned to contribute to long-term mission objectives.
      The agreement between L3Harris Technologies and Parametric Machining, Inc. demonstrates the value of NASA’s revamped Mentor-Protégé Program. NASA is actively accepting new Mentor-Protégé Agreements and encourages large prime contractors and small businesses to explore the benefits of forming partnerships under the program. Participating in the Mentor-Protégé Program provides:
      Enhanced manufacturing capabilities and subcontracting opportunities. Mentorship from experienced NASA prime contractors. Opportunities to advance competitiveness in government contracts. Access to technical assistance and business development support. A pathway for small businesses to integrate into NASA’s supply chain. L3Harris Technologies is a prime contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, supporting the Geostationary Extended Observations Imager Instrument Implementation contract. NASA Goddard also will serve as the administering center for this agreement.
      For more information on NASA’s Mentor-Protégé Program and how to participate, visit:
      https://www.nasa.gov/osbp/mentor-protege-program
      -end-
      Share
      Details
      Last Updated Apr 17, 2025 ContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
      Office of Small Business Programs (OSBP) View the full article
    • By Space Force
      The Space Force releases the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.

      View the full article
    • By Space Force
      The Space Force released the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.

      View the full article
    • By NASA
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.
      A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy. Image Credit: NASA Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.
      You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.
      “We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.
      Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.
      QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.
      Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”
      Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.
      Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.
      The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.
      “No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”
      This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.
      Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.
      To learn more about ESTO visit: https://esto.nasa.gov
      Share








      Details
      Last Updated Apr 15, 2025 Editor NASA Science Editorial Team Contact Gage Taylor gage.taylor@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Science-enabling Technology Earth Science Technology Office Technology Highlights Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet


      Article


      4 weeks ago
      4 min read Novel Metasurface Optical Element Could Shed New Light on Atmospheric Aerosols


      Article


      1 month ago
      5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging


      Article


      2 months ago
      View the full article
    • By European Space Agency
      Image: Planetary Nebula NGC 1514 (MIRI image) View the full article
  • Check out these Videos

×
×
  • Create New...