Jump to content

How NASA Is Protecting Europa Clipper From Space Radiation


Recommended Posts

  • Publishers
Posted

5 min read

How NASA Is Protecting Europa Clipper From Space Radiation

Engineers and technicians are seen closing the vault of NASA’s Europa Clipper in the main clean room of the Spacecraft Assembly Facility at JPL on Oct. 7. The vault will protect the electronics of the spacecraft as it orbits Jupiter.
Engineers and technicians are seen closing the vault of NASA’s Europa Clipper in the main clean room of the Spacecraft Assembly Facility at JPL on Oct. 7. The vault will protect the electronics of the spacecraft as it orbits Jupiter.
NASA/JPL-Caltech

To explore the mysterious ice-encrusted moon Europa, the mission will need to endure bombardment by radiation and high-energy particles surrounding Jupiter.

When NASA’s Europa Clipper begins orbiting Jupiter to investigate whether its ice-encased moon, Europa, has conditions suitable for life, the spacecraft will pass repeatedly through one of the most punishing radiation environments in our solar system.

Hardening the spacecraft against potential damage from that radiation is no easy task. But on Oct. 7, the mission put the final piece of the spacecraft’s “armor” in place when it sealed the vault, a container specially designed to shield Europa Clipper’s sophisticated electronics. The probe is being put together, piece by piece, in the Spacecraft Assembly Facility at NASA’s Jet Propulsion Laboratory in Southern California ahead of its launch in October 2024.

Join team members from NASA’s Europa Clipper mission behind the scenes in a clean room at JPL to learn about the design of the spacecraft. Credit: NASA/JPL-Caltech

“Closing the vault is a major milestone,” said Kendra Short, Europa Clipper’s deputy flight system manager at JPL. “It means we’ve got everything in there that we have to have in there. We’re ready to button it up.”

Just under a half-inch (1 centimeter) thick, the aluminum vault houses the electronics for the spacecraft’s suite of science instruments. The alternative of shielding each set of electronic parts individually would add cost and weight to the spacecraft.

“The vault is designed to reduce the radiation environment to acceptable levels for most of the electronics,” said JPL’s Insoo Jun, the co-chair of the Europa Clipper Radiation Focus Group and an expert on space radiation.

Punishing Radiation

Jupiter’s gigantic magnetic field is 20,000 times as strong as Earth’s and spins rapidly in time with the planet’s 10-hour rotation period. This field captures and accelerates charged particles from Jupiter’s space environment to create powerful radiation belts. The radiation is a constant, physical presence – a kind of space weather – bombarding everything in its sphere of influence with damaging particles.

“Jupiter has the most intense radiation environment other than the Sun in the solar system,” Jun said. “The radiation environment is affecting every aspect of the mission.”

This illustration depicts NASA’s Europa Clipper as it flies by Jupiter’s moon Europa. The mission is targeting an October 2024 launch.
This illustration depicts NASA’s Europa Clipper as it flies by Jupiter’s moon Europa. The mission is targeting an October 2024 launch.
NASA/JPL-Caltech

That’s why when the spacecraft arrives at Jupiter in 2030, Europa Clipper won’t simply park in orbit around Europa. Instead, like some previous spacecraft that studied the Jovian system, it will make a wide-ranging orbit of Jupiter itself to move away from the planet and its harsh radiation as much as possible. During those looping orbits of the planet, the spacecraft will fly past Europa nearly 50 times to gather scientific data.

The radiation is so intense that scientists believe it modifies the surface of Europa, causing visible color changes, said Tom Nordheim, a planetary scientist at JPL who specializes in icy outer moons – Europa as well as Saturn’s Enceladus.

“Radiation on the surface of Europa is a major geologic modification process,” Nordheim said. “When you look at Europa – you know, the reddish-brown color – scientists have shown that this is consistent with radiation processing.”

Chaotic Icescape

So even as engineers work to keep radiation out of Europa Clipper, scientists like Nordheim and Jun hope to use the space probe to study it.

“With a dedicated radiation monitoring unit, and using opportunistic radiation data from its instruments, Europa Clipper will help reveal the unique and challenging radiation environment at Jupiter,” Jun said.

Nordheim zeroes in on Europa’s “chaos terrain,” areas where blocks of surface material appear to have broken apart, rotated, and moved into new positions, in many cases preserving preexisting linear fracture patterns.

Deep beneath the moon’s icy surface is a vast liquid-water ocean, scientists believe, that could offer a habitable environment for life. Some areas of Europa’s surface show evidence of material transport from the subsurface to the surface. “We need to understand the context of how radiation modified that material,” Nordheim said. “It can alter the chemical makeup of the material.”

The Power of Heat

Because Europa’s ocean is locked inside an envelope of ice, any possible life forms would not be able to rely directly on the Sun for energy, as plants do on Earth. Instead, they’d need an alternative energy source, such as heat or chemical energy. Radiation raining down on Europa’s surface could help provide such a source by creating oxidants, such as oxygen or hydrogen peroxide, as the radiation interacts with the surface ice layer.

Over time, these oxidants could be transported from the surface to the interior ocean. “The surface could be a window into the subsurface,” Nordheim said. A better understanding of such processes could provide a key to unlock more of the Jupiter system’s secrets, he added: “Radiation is one of the things that makes Europa so interesting. It’s part of the story.”

More About the Mission

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

More information about Europa can be found here:

europa.nasa.gov

News Media Contacts

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

Written by Pat Brennan

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Axiom Mission 4 and Expedition 73 crews join together for a group portrait inside the International Space Station’s Harmony module. In the front row (from left) are Ax-4 crewmates Tibor Kapu, Peggy Whitson, Shubhanshu Shukla, and Sławosz Uznański-Wiśniewski with Expedition 73 crewmates Anne McClain and Takuya Onishi. In the rear are, Expedition 73 crewmates Alexey Zubritskiy, Kirill Peskov, Sergey Ryzhikov, Jonny Kim, and Nichole Ayers.Credit: NASA NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
      The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
      Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
      The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Monday, July 14
      4:30 a.m. – Hatch closing coverage begins on NASA+.
      4:55 a.m. – Crew enters spacecraft followed by hatch closing.
      6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7:05 a.m. – Undocking
      NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jul 11, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Commercial Space Commercial Space Programs Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX). NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.
      The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.
      Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.
      “Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”
      A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.
      “Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”
      Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  
      Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.
      Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.
      Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.
      After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.
      Explore More
      2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test
      Article 2 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By Amazing Space
      MUSK Says It's Time To Scarp the Space Station - Why He's Wrong!
    • By European Space Agency
      Image: The varied landscape of England’s Lake District is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
    • By NASA
      To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.
      Take a tour through this section of the Cat’s Paw Nebula.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
  • Check out these Videos

×
×
  • Create New...