Members Can Post Anonymously On This Site
NASA’s Modern History Makers: Maricela Lizcano
-
Similar Topics
-
By NASA
5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
An artist’s concept showing Parker Solar Probe. Credits:
NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
Nicky fox
NASA Associate Administrator, Science Mission Directorate
“Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
“Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
“The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
Joe Westlake
Heliophysics Division Director, NASA Headquarters
“The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact: Sarah Frazier
Share
Details
Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time
Article
3 years ago
4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
Article
2 months ago
6 min read 10 Things to Know About Parker Solar Probe
On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…
Article
6 years ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The SpaceX Dragon Freedom spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbited 261 miles above Ontario, Canada, near James Bay. NASA published a new report Thursday highlighting 17 agency mechanisms that have directly and indirectly supported the development and growth of the U.S. commercial space sector for the benefit of humanity.
The report, titled Enabling America on the Space Frontier: The Evolution of NASA’s Commercial Space Development Toolkit, is available on the agency’s website.
“This is the most extensive and comprehensive historical analysis produced by NASA on how it has contributed to commercial space development over the decades,” said Alex MacDonald, NASA chief economist. “These efforts have given NASA regular access to space with companies, such as SpaceX and Rocket Lab, modernizing our communications infrastructure, and even led to the first private lunar lander thanks to Intuitive Machines. With commercial space growth accelerating, this report can help agency leaders and stakeholders assess the numerous mechanisms that the agency uses to support this growth, both now and in the future.”
Throughout its history, NASA has supported the development of the commercial space sector, not only leading the way in areas such as satellite communications, launch, and remote sensing, but also developing new contract and operational models to encourage commercial participation and growth. In the last three decades, NASA has seen the results of these efforts with commercial partners able to contribute more to missions across NASA domains, and increasingly innovative agency-led efforts to engage, nurture, and integrate these capabilities. These capabilities support the agency’s mission needs, and have seen a dramatic rise in importance, according to the report.
NASA has nurtured technology, companies, people, and ideas in the commercial space sector, contributing to the U.S. and global economies, across four distinct periods in the agency’s history:
1915–1960: NASA’s predecessor, the National Advisory Committee on Aeronautics (NACA), and NASA’s pre-Apollo years. 1961–1980: Apollo era. 1981–2010: Space shuttle era. 2011–present: Post-shuttle commercial era. Each of these time periods are defined by dominant technologies, programs, or economic trends further detailed in the report.
Though some of these mechanisms are relatively recent, others have been used throughout the history of NASA and NACA, leading to some overlap. The 17 mechanisms are as follows:
Contracts and Partnership Agreements Research and Technology Development (R&TD) Dissemination of Research and Scientific Data Education and Workforce Development Workforce External Engagement and Mobility Technology Transfer Technical Support Enabling Infrastructure Launch Direct In-Space Support Standards and Regulatory Framework Support Public Engagement Industry Engagement Venture Capital Engagement Market Stimulation Funding Economic Analysis and Due Diligence Capabilities Narrative Encouragement NASA supports commercial space development in everything from spaceflight to supply chains. Small satellite capabilities have inspired a new generation of space start-ups, while new, smaller rockets, as well as new programs are just starting. Examples include CLPS (Commercial Lunar Payload Services), commercial low Earth orbit destinations, human landing systems, commercial development of NASA spacesuits, and lunar terrain vehicles. The report also details many indirect ways the agency has contributed to the vibrance of commercial space, from economic analyses to student engagement.
The agency’s use of commercial capabilities has progressed from being the exception to the default method for many of its missions. The current post-shuttle era of NASA-supported commercial space development has seen a level of technical development comparable to the Apollo era’s Space Race. Deploying the 17 commercial space development mechanisms in the future are part of NASA’s mission to continue encouraging commercial space activities.
To learn more about NASA’s missions, please visit:
https//:www.nasa.gov
Share
Details
Last Updated Dec 19, 2024 EditorBill Keeter Related Terms
Office of Technology, Policy and Strategy (OTPS) View the full article
-
By NASA
1 Min Read Oral History with R. Walter Cunningham
Lunar module pilot Walter Cunningham writes with a space pen as he performs flight tasks on the ninth day of the Apollo 7 mission. Credits: NASA Selected for NASA’s third astronaut class in 1963, Cunningham served as the backup Lunar Module Pilot for Apollo 1. He piloted the 11-day flight of Apollo 7 in October 1968, the first manned flight test of the Apollo spacecraft. The crew executed maneuvers enabling them to practice for upcoming Apollo lunar orbit rendezvous missions and provided the first live television transmission of onboard crew activities. Cunningham served as the Chief of the Skylab branch under the Flight Crew Directorate at Johnson Space Center in 1969 until his retirement and move to the private sector in 1971.
Read more about R. Walter Cunningham
NASA Oral History, May 24, 1999 NASA Biography Apollo Astronaut Walter Cunningham Dies at 90 The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
View the full article
-
By NASA
1 Min Read Oral History with Karol J. Bobko
View of STS 51-D crew commander Karol Bobko training with the Arriflex 16mm camera. Credits: NASA A veteran of three space flights, Karol J. “Bo” Bobko was selected as an astronaut in 1969 and served as a crewmember on the Skylab Medical Experiments Altitude Test (SMEAT) 56-day ground simulation in preparation for the Skylab missions. He served in various positions supporting the Apollo-Soyuz Test Project and the first Approach and Landing Tests for the Space Shuttle before flying as the STS-6 pilot and as the mission commander on STS-51D and STS-51J.
Read more about Karol J. “Bo” Bobko
NASA Oral History, February 12, 2002 NASA Biography The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
View the full article
-
By European Space Agency
Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
read the article Philae’s extraordinary comet landing relived.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.