Jump to content

NASA’s Dragonfly Tunnel Visions


NASA

Recommended Posts

  • Publishers

5 min read

NASA’s Dragonfly Tunnel Visions

Dragonfly Team Utilizes Unique NASA Facilities to Shape Its Innovative Titan-bound Rotorcraft 

Dragonfly team members review the half-scale lander model
Dragonfly team members review the half-scale lander model after it underwent wind tunnel testing at NASA Langley Research Center in Hampton, Virginia. Pictured are (from left) Art Azarbarzin, Juan Cruz, Wayne Dellinger, Zibi Turtle, Chuck Hebert, Ken Hibbard, Bernadine Juliano and Bruce Owens.
Johns Hopkins APL/Ed Whitman

With its dense atmosphere and low gravity, Saturn’s moon Titan is a great place to fly. 

But well before NASA’s Dragonfly rotorcraft lander soars through Titan’s skies, researchers on Earth – led by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland – are making sure their designs and models for the nuclear-powered, car-sized drone will work in a truly unique environment.

Artist’s impression of the Dragonfly rotorcraft lander on the surface of Titan, Saturn’s largest moon
Artist’s impression of the Dragonfly rotorcraft lander on the surface of Titan, Saturn’s largest moon and a major target in NASA’s quest to assess habitability and search for potential signs of life beyond Earth on worlds across the solar system.
NASA/Johns Hopkins APL/Steve Gribben

Dragonfly, NASA’s only mission to the surface of another ocean world, is designed to investigate the complex chemistry that is the precursor to life. The vehicle, which APL will build and operate, will be equipped with cameras, sensors and samplers to examine swaths of Titan known to contain organic materials that may, at some point in Titan’s complex history, have come in contact with liquid water beneath the organic-rich, icy surface. 

To transport those science instruments across the moon, Dragonfly’s four pairs of coaxial rotors (meaning one rotor is stacked above the other) will need to slice through Titan’s dense, nitrogen-rich atmosphere. Four times in the past three years, the mission team has headed to Virginia to test its flight systems in one-of-a-kind facilities at NASA’s Langley Research Center in Hampton, Virginia. 

Mission engineers have conducted two test campaigns in NASA Langley’s 14-by-22-foot Subsonic Tunnel, and two in the 16-foot Transonic Dynamics Tunnel (TDT).  They use the Subsonic Tunnel to validate computational fluid dynamics models and data gathered from integrated test platforms – terrestrial drones outfitted with Dragonfly-designed flight electronics. They use the variable-density heavy gas capabilities of the TDT to validate its models under simulated Titan atmospheric conditions — one aerodynamic stability test of the aeroshell that is used to deliver the Lander to a release point above Titan’s surface and one to model the Lander’s rotors aerodynamics. 

“All of these tests feed into our Dragonfly Titan simulations and performance predictions,” said Ken Hibbard, Dragonfly mission systems engineer at APL. 

On its latest trip to NASA Langley, in June, the team set up a half-scale Dragonfly lander model, complete with eight rotors, in the 14-by-22 Subsonic Tunnel. Test lead Bernadine Juliano of APL said the campaign focused on two flight configurations: Dragonfly’s descent and transition to powered flight upon arrival at Titan, and forward flight over Titan’s surface. 

“We tested conditions across the expected flight envelope at a variety of wind speeds, rotor speeds, and flight angles to assess the aerodynamic performance of the vehicle,” she said. “We completed more than 700 total runs, encompassing over 4,000 individual data points. All test objectives were successfully accomplished and the data will help increase confidence in our simulation models on Earth before extrapolating to Titan conditions.”

APL engineers are analyzing the 14-by-22 test data with mission flight team partners at the University of Central Florida, Penn State University, Lockheed Martin Sikorsky, NASA Langley and NASA Ames Research Center in Silicon Valley, California. Rick Heisler, the Dragonfly wind tunnel test lead from APL who heads the TDT test campaigns, said each trip to NASA Langley has given the team a chance to hone its technical models and designs and, specifically in the TDT, gain a better idea of how Dragonfly’s rotors will perform in Titan’s exotic atmosphere.  

“The heavy gas environment in the TDT has a density three-and-a-half times higher than air while operating at sea level ambient pressure and temperature,” Heisler said, “This allows the rotors to operate at near-Titan conditions and better replicate the lift and dynamic loading the actual lander will experience. The data we acquire are used to validate predictions of the lander aerodynamics, aero-structural performance and rotor fatigue life in the harsh cryogenic environment on Titan.”

“With Dragonfly, we’re turning science fiction into exploration fact,” Hibbard said. “The mission is coming together piece by piece, and we’re excited for every next step toward sending this revolutionary rotorcraft across the skies and surface of Titan.” 

Part of NASA’s New Frontiers Program, Dragonfly is scheduled to launch no earlier than 2027 and arrive at Titan in the mid-2030s. Principal Investigator Elizabeth Turtle of APL leads a mission team that includes engineers, scientists and specialists from APL as well as NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin Space in Littleton, Colorado; NASA’s Ames Research Center in Silicon Valley, California; NASA’s Langley Research Center in Hampton, Virginia; Penn State University in State College, Pennsylvania; University of Central Florida in Orlando, Florida; Lockheed Martin Sikorsky in Stratford, Connecticut; Malin Space Science Systems in San Diego; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory in Southern California;  CNES (Centre National d’Etudes Spatiales) in Paris; the German Aerospace Center (DLR) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo. 

Learn more at www.nasa.gov/dragonfly

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA’s Ames Research Center’s transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA Four grid fins on the Super Heavy rocket help stabilize and control the rocket as it re-enters Earth’s atmosphere after launching Starship to a lunar trajectory. Engineers tested the effects of various aerodynamic conditions on several grid fin configurations during wind tunnel testing. NASA Wind tunnel testing at NASA’s Ames Research Center helped engineers better understand the aerodynamic forces the SpaceX Super Heavy rocket, with its 33 Raptor engines, experiences during various stages of flight. As a result of the testing, engineers updated flight control algorithms and modified the exterior design of the rocket. NASA NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California’s Silicon Valley. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the HLS Starship, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      Construction of the Ames wind tunnel and its original 40- by 80-foot test section. A later expansion created an additional 80- by 120-foot test section. A Navy blimp, which would have been based at Hangars 2 and 3 at Moffett Field, patrols in the background.
      Image Credit: NACA
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      NASA has awarded a task order modification to the Aerospace Testing and Facilities Operations and Maintenance (ATOM-5) contract to Jacobs Technology Inc., of Tullahoma, Tennessee, to provide the agency’s Ames Research Center in California’s Silicon Valley, with an upgrade to the center’s Unitary Plan Wind Tunnel main drive speed control variable frequency drive. 
      The ATOM-5 award is a cost-plus fixed-fee indefinite-delivery indefinite-quantity contract that supports several experiments in the ground-based aerospace facilities at Ames, including wind tunnels, high-enthalpy arc jet facilities, and the Sensor and Thermal Protection System Advanced Research Lab. The task order award value is $41 million with a period of performance through Oct. 1, 2027.
      The project will upgrade the electrical system of its wind tunnel to improve the efficiency and capability of the main drive motors. These motors are required to operate the 11-by-11-foot Transonic Wind Tunnel and 9-by-7-foot Supersonic Wind Tunnel facilities at Ames. The upgrade is expected to result in improved facility reliability, reductions in annual power and water usage, reduction of maintenance requirements, and elimination of environmental hazards allowing the facility to continue to support NASA missions and programs into the future.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov

      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      3 min read
      NASA’s Dragonfly to Proceed with Final Mission Design Work
      Artist’s Impression: Dragonfly Departs and heads off toward its next landing spot on Titan. Image credit: NASA/Johns Hopkins APL/Steve Gribben NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and fabrication – known as Phase C – during fiscal year (FY) 2024. The agency is postponing formal confirmation of the mission (including its total cost and schedule) until mid-2024, following the release of the FY 2025 President’s Budget Request.
      Earlier this year, Dragonfly – a mission to send a rotorcraft to explore Saturn’s moon Titan – passed all the success criteria of its Preliminary Design Review. The Dragonfly team conducted a re-plan of the mission based on expected funding available in FY 2024 and estimate a revised launch readiness date of July 2028. The Agency will officially assess the mission’s launch readiness date in mid-2024 at the Agency Program Management Council.
      “The Dragonfly team has successfully overcome a number of technical and programmatic challenges in this daring endeavor to gather new science on Titan,” said Nicola Fox, associate administrator of NASA’s Science Mission Directorate at NASA headquarters in Washington. “I am proud of this team and their ability to keep all aspects of the mission moving toward confirmation.”
      Dragonfly takes a novel approach to planetary exploration, for the first time employing a rotorcraft-lander to travel between and sample diverse sites on Titan. Dragonfly’s goal is to characterize the habitability of the moon’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan.
      Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin Space in Littleton, Colorado; Sikorsky, a Lockheed Martin company; NASA’s Ames Research Center in Silicon Valley, California; NASA’s Langley Research Center in Hampton, Virginia; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory in Southern California; CNES (Centre National d’Etudes Spatiales), the French space agency, in Paris, France; DLR (German Aerospace Center) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo, Japan. Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate.
      Share








      Details
      Last Updated Nov 28, 2023 Editor WILLIAM KEETER Related Terms
      Dragonfly Planetary Science Planetary Science Division Saturn Science & Research Science Mission Directorate The Solar System View the full article
  • Check out these Videos

×
×
  • Create New...