Jump to content

White Dwarf Lost in Planetary Nebula


HubbleSite

Recommended Posts

low_STSCI-H-p0821a-k-1340x520.png

Call it the case of the missing dwarf. A team of stellar astronomers is engaged in an interstellar CSI (crime scene investigation). They have two suspects, traces of assault and battery, but no corpse. The southern planetary nebula SuWt 2 is the scene of the crime, some 6,500 light-years from Earth in the direction of the constellation Centaurus. SuWt 2 consists of a bright, nearly edge-on glowing ring of gas. Faint lobes extend perpendicularly to the ring, giving the faintest parts of the nebula an hourglass shape. These glowing ejecta are suspected to have been energized by a star that has now burned out and collapsed to a white dwarf. But the white dwarf is nowhere to be found. This color image was taken on Jan. 31, 1995 at the Cerro Tololo Inter-American Observatory in Chile. These results are being presented today at the 212th meeting of the American Astronomical Society in St. Louis, Mo.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Hubble Traces Star Formation in a Nearby Nebula
      NASA, ESA, and L. C. Johnson (Northwestern University); Image Processing: Gladys Kober (NASA/Catholic University of America) NGC 261 blooms a brilliant ruby red against a myriad of stars in this new image from NASA’s Hubble Space Telescope. Discovered on Sept. 5, 1826 by Scottish astronomer James Dunlop, this nebula is located in one of the Milky Way’s closest galactic companions, the Small Magellanic Cloud (SMC). The ionized gas blazing from within this diffuse region marks NGC 261 as an emission nebula. It is home to numerous stars hot enough to irradiate surrounding hydrogen gas, causing the cloud to emit a pinkish-red glow.
      This inset image shows the location of NGC 261 within the Small Magellanic Cloud. NASA, ESA, L. C. Johnson (Northwestern University), and ESO/VISTA VMC; Image Processing: Gladys Kober (NASA/Catholic University of America) Hubble turned its keen eye toward NGC 261 to investigate how efficiently stars form in molecular clouds, which are extremely dense and compact regions of gas and dust. These clouds often consist of large amounts of molecular hydrogen — cold areas where most stars form. However, measuring this raw fuel of star formation in stellar nurseries is a challenge because molecular hydrogen doesn’t radiate easily. Since it is difficult to detect, scientists instead trace other molecules present in the molecular clouds.
      The SMC hosts a gas-rich environment of young stars along with trace amounts of carbon monoxide (CO), a chemical correlated with hydrogen and often used to identify the presence of such clouds. Using the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3), Hubble imaged these stars in the southwest portion of the SMC where NGC 261 resides. The combined power of ACS and WFC3 allowed scientists to closely examine the nebula’s star-forming properties through its CO content at optical and near-infrared wavelengths. This research helps astronomers better understand how stars form in our home galaxy and others in our galactic neighborhood.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 28, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      “I didn’t always grow up knowing that I was going to be working for NASA. It was just the way my life unfolded, and I couldn’t be more grateful and lucky to have this opportunity to be here. I think hiking is what really got me into my passion for wanting to have this outdoors kind of career. I’ve always pursued environmental science and geology, and still at that point in time, I had no idea that I could apply that kind of science to outer space and work for NASA one day.
      “It wasn’t until I had these amazing mentors in front of me who were showing me, ‘Hey, what you’re doing, you can apply this to, for instance, Mars.’ And that’s what sparked my inspiration — [realizing] Mars had these ancient lakes and [wondering], ‘How can I use what I’m doing here on Earth to understand what was going on with those ancient lakes on Mars?’
      “I’m kind of lucky. It’s less of a job and more of this exciting career opportunity where I get to go out into the field and even hike for a good portion of [my workday]. For instance, I just got back from Iceland where I was for 10 days. On these field trips, I’m in my comfort zone wearing a flannel and winter hat, backpacking with my rock hammer and shovel, hiking for a few hours to pick up samples, and then come back home to analyze them in the lab. I couldn’t have written a better story for me to continue doing the stuff that I enjoyed as a child and now to be doing it now for NASA is something I couldn’t have even dreamed of.
      “Hiking and being in the field is the fun part. But then I get to come back to the lab and compare it to what Martian rovers are doing. They’re our hikers, our pioneers, our explorers, our geologists who are collecting samples for us on other planets.  It’s remarkable, often mind-blowing, to be able to work directly with our planetary geologists as well as the amazing people on the rover teams from around the globe to understand the surface of Mars and then eventually, compare it to what I see in the field here on Earth.
      “So, I’m still that young boy at heart with my backpack and flannel on and headed out into the field.”
      – Dr. Michael Thrope, Sedimentary and Planetary Geologist, NASA’s Goddard Space Flight Center
      Image Credit: Iceland Space Agency/Daniel Leeb
      Interviewer: NASA/Tahira Allen
      Check out some of our other Faces of NASA. 
      View the full article
    • By NASA
      5 Min Read NASA Optical Navigation Tech Could Streamline Planetary Exploration
      Optical navigation technology could help astronauts and robots find their ways using data from cameras and other sensors. Credits: NASA As astronauts and rovers explore uncharted worlds, finding new ways of navigating these bodies is essential in the absence of traditional navigation systems like GPS. Optical navigation relying on data from cameras and other sensors can help spacecraft — and in some cases, astronauts themselves — find their way in areas that would be difficult to navigate with the naked eye. Three NASA researchers are pushing optical navigation tech further, by making cutting edge advancements in 3D environment modeling, navigation using photography, and deep learning image analysis. In a dim, barren landscape like the surface of the Moon, it can be easy to get lost. With few discernable landmarks to navigate with the naked eye, astronauts and rovers must rely on other means to plot a course.
      As NASA pursues its Moon to Mars missions, encompassing exploration of the lunar surface and the first steps on the Red Planet, finding novel and efficient ways of navigating these new terrains will be essential. That’s where optical navigation comes in — a technology that helps map out new areas using sensor data.
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a leading developer of optical navigation technology. For example, GIANT (the Goddard Image Analysis and Navigation Tool) helped guide the OSIRIS-REx mission to a safe sample collection at asteroid Bennu by generating 3D maps of the surface and calculating precise distances to targets.
      Now, three research teams at Goddard are pushing optical navigation technology even further.
      Virtual World Development
      Chris Gnam, an intern at NASA Goddard, leads development on a modeling engine called Vira that already renders large, 3D environments about 100 times faster than GIANT. These digital environments can be used to evaluate potential landing areas, simulate solar radiation, and more.
      While consumer-grade graphics engines, like those used for video game development, quickly render large environments, most cannot provide the detail necessary for scientific analysis. For scientists planning a planetary landing, every detail is critical.
      Vira can quickly and efficiently render an environment in great detail.NASA “Vira combines the speed and efficiency of consumer graphics modelers with the scientific accuracy of GIANT,” Gnam said. “This tool will allow scientists to quickly model complex environments like planetary surfaces.”
      The Vira modeling engine is being used to assist with the development of LuNaMaps (Lunar Navigation Maps). This project seeks to improve the quality of maps of the lunar South Pole region which are a key exploration target of NASA’s Artemis missions.
      Vira also uses ray tracing to model how light will behave in a simulated environment. While ray tracing is often used in video game development, Vira utilizes it to model solar radiation pressure, which refers to changes in momentum to a spacecraft caused by sunlight.
      Vira can accurately render indirect lighting, which is when an area is still lit up even though it is not directly facing a light source.NASA Find Your Way with a Photo
      Another team at Goddard is developing a tool to enable navigation based on images of the horizon. Andrew Liounis, an optical navigation product design lead, leads the team, working alongside NASA Interns Andrew Tennenbaum and Will Driessen, as well as Alvin Yew, the gas processing lead for NASA’s DAVINCI mission.
      An astronaut or rover using this algorithm could take one picture of the horizon, which the program would compare to a map of the explored area. The algorithm would then output the estimated location of where the photo was taken.
      Using one photo, the algorithm can output with accuracy around hundreds of feet. Current work is attempting to prove that using two or more pictures, the algorithm can pinpoint the location with accuracy around tens of feet.
      “We take the data points from the image and compare them to the data points on a map of the area,” Liounis explained. “It’s almost like how GPS uses triangulation, but instead  of having multiple observers to triangulate one object, you have multiple observations from a single observer, so we’re figuring out where the lines of sight intersect.”
      This type of technology could be useful for lunar exploration, where it is difficult to rely on GPS signals for location determination.
      A Visual Perception Algorithm to Detect Craters
      To automate optical navigation and visual perception processes, Goddard intern Timothy Chase is developing a programming tool called GAVIN (Goddard AI Verification and Integration) Tool Suit.
      This tool helps build deep learning models, a type of machine learning algorithm that is trained to process inputs like a human brain. In addition to developing the tool itself, Chase and his team are building a deep learning algorithm using GAVIN that will identify craters in poorly lit areas, such as the Moon.
      “As we’re developing GAVIN, we want to test it out,” Chase explained. “This model that will identify craters in low-light bodies will not only help us learn how to improve GAVIN, but it will also prove useful for missions like Artemis, which will see astronauts exploring the Moon’s south pole region — a dark area with large craters — for the first time.”
      As NASA continues to explore previously uncharted areas of our solar system, technologies like these could help make planetary exploration at least a little bit simpler. Whether by developing detailed 3D maps of new worlds, navigating with photos, or building deep learning algorithms, the work of these teams could bring the ease of Earth navigation to new worlds.
      By Matthew Kaufman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Aug 07, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Artificial Intelligence (AI) Goddard Space Flight Center Technology Explore More
      4 min read NASA Improves GIANT Optical Navigation Technology for Future Missions
      Goddard's GIANT optical navigation software helped guide the OSIRIS-REx mission to the Asteroid Bennu. Today…
      Article 10 months ago 4 min read Space Station Research Contributes to Navigation Systems for Moon Voyages
      Article 2 years ago 5 min read NASA, Industry Improve Lidars for Exploration, Science
      NASA engineers will test a suite of new laser technologies from an aircraft this summer…
      Article 5 months ago View the full article
    • By NASA
      6 min read
      Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
      Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and moons, and are carried throughout interplanetary space by solar wind. This is precisely why magnetometers—devices used to measure magnetic fields—are flown on almost all missions in space to benefit the Earth, Planetary, and Heliophysics science communities, and ultimately enrich knowledge for all humankind. These instruments can remotely probe the interior of a planetary body to provide insight into its internal composition, structure, dynamics, and even evolution based on the magnetic history frozen into the body’s crustal rock layers. Magnetometers can even discover hidden oceans within our solar system and help determine their salinity, thereby providing insight into the potential habitability of these icy worlds.
      Left: The magnetic field of Jupiter provides insight into its interior composition, structure, dynamics, and even its evolutionary history. Right: Image of the first prototype 4H-SiC solid-state magnetometer sensor die (2mm by 2mm) developed by NASA-GRC. Each gold rectangle or square on the surface represents an individual sensor, the smallest being 10 microns by 10 microns. Fluxgates are the most widely used magnetometers for missions in space due to their proven performance and simplicity. However, the conventional size, weight, and power (SWaP) of fluxgate instruments can restrict them from being used on small platforms like CubeSats and sometimes limit the number of sensors that can be used on a spacecraft for inter-sensor calibration, redundancy, and spacecraft magnetic field removal. Traditionally, a long boom is used to distance the fluxgate magnetometers from the contaminate magnetic field generated by the spacecraft, itself, and at least two sensors are used to characterize the falloff of this field contribution so it can be removed from the measurements. Fluxgates also do not provide an absolute measurement, meaning that they need to be routinely calibrated in space through spacecraft rolls, which can be time and resource intensive.
      An SMD-funded team at NASA’s Jet Propulsion Laboratory in Southern California has partnered with NASA’s Glenn Research Center in Cleveland, Ohio to prototype a new magnetometer called the silicon carbide (SiC) magnetometer, or SiCMag, that could change the way magnetic fields are measured in space. SiCMag uses a solid-state sensor made of a silicon carbide (SiC) semiconductor. Inside the SiC sensor are quantum centers—intentionally introduced defects or irregularities at an atomic scale—that give rise to a magnetoresistance signal that can be detected by monitoring changes in the sensor’s electrical current, which indicate changes in the strength and direction of the external magnetic field. This new technology has the potential to be incredibly sensitive, and due to its large bandgap (i.e., the energy required to free an electron from its bound state so it can participate in electrical conduction), is capable of operating in the wide range of temperature extremes and harsh radiation environments commonly encountered in space.
      Team member David Spry of NASA Glenn indicates, “Not only is the SiC material great for magnetic field sensing, but here at NASA Glenn we’re further developing robust SiC electronics that operate in hot environments far beyond the upper temperature limitations of silicon electronics. These SiC-based technologies will someday enable long-duration robotic scientific exploration of the 460 °C Venus surface.”
      SiCMag is also very small— the sensor area is only 0.1 x 0.1 mm and the compensation coils are smaller than a penny. Consequently, dozens of SiCMag sensors can easily be incorporated on a spacecraft to better remove the complex contaminate magnetic field generated by the spacecraft, reducing the need for a long boom to distance the sensors from the spacecraft, like implemented on most spacecraft, including Psyche (see figure below).
      The magnetic field lines associated with the Psyche spacecraft, modeled from over 200 individual magnetic sources. Removing this magnetic field contribution from the measurements conventionally requires the use of two fluxgate sensors on a long boom. Incorporating 4 or more SiCMag sensors in such a scenario would significantly reduce the size of the boom required, or even remove the need for a boom completely. Image Credit: This image was adopted from https://science.nasa.gov/resource/magnetic-field-of-the-psyche-spacecraft/ SiCMag has several advantages when compared to fluxgates and other types of heritage magnetometers including those based on optically pumped atomic vapor. SiCMag is a simple instrument that doesn’t rely on optics or high-frequency components, which are sensitive to temperature variations. SiCMag’s low SWaP also allows for accommodation on small platforms such as CubeSats, enabling simultaneous spatial and temporal magnetic field measurements not possible with single large-scale spacecraft. This capability will enable planetary magnetic field mapping and space weather monitoring by constellations of CubeSats. Multiplatform measurements would also be very valuable on the surface of the Moon and Mars for crustal magnetic field mapping, composition identification, and magnetic history investigation of these bodies.
      SiCMag has a true zero-field magnetic sensing ability (i.e., SiCMag can measure extremely weak magnetic fields), which is unattainable with most conventional atomic vapor magnetometers due to the requisite minimum magnetic field needed for the sensor to operate. And because the spin-carrying electrons in SiCMag are tied up in the quantum centers, they won’t escape the sensor, meaning they are well-suited for decades-long journeys to the ice-giants or to the edges of the heliosphere. This capability is also an advantage of SiCMag’s optical equivalent sibling, OPuS-MAGNM, an optically pumped solid state quantum magnetometer developed by Hannes Kraus and matured by Andreas Gottscholl of the JPL solid-state magnetometry group. SiCMag has the advantage of being extremely simple, while OPuS-MAGNM promises to have lower noise characteristics, but uses complex optical components.
      According to Dr. Andreas Gottscholl, “SiCMag and OPuS-MAGNM are very similar, actually. Progress in one sensor system translates directly into benefits for the other. Therefore, enhancements in design and electronics advance both projects, effectively doubling the impact of our efforts while we are still flexible for different applications.”
      SiCMag has the ability to self-calibrate due to its absolute sensing capability, which is a significant advantage in the remote space environment. SiCMag uses a spectroscopic calibration technique that atomic vapor magnetometers also leverage called magnetic resonance (in the case of SiCMag, the magnetic resonance is electrically detected) to measure the precession frequency of electrons associated with the quantum centers, which is directly related to the magnetic field in which the sensor is immersed. This relationship is a fundamental physical constant in nature that doesn’t change as a function of time or temperature, making the response ideal for calibration of the sensor’s measurements. “If we are successful in achieving the sought-out sensitivity improvement we anticipate using isotopically purer materials, SiC could change the way magnetometry is typically performed in space due to the instrument’s attractive SWaP, robustness, and self-calibration ability,” says JPL’s Dr. Corey Cochrane, principal investigator of the SiCMag technology.
      The 3-axis 3D printed electromagnet – no larger than the size of a US penny – is used to modulate and maintain a region of zero magnetic field around our 0.1 mm x 0.1 mm 4H-SiC solid-state sensor. NASA has been funding this team’s solid-state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia also support this research, including NASA’s Glenn Research Center in Cleveland, Penn State University, University of Iowa, QuantCAD LLC, as well as international partners such as Japan’s Quantum Materials and Applications Research Center (QUARC) and Infineon Technologies.
      The SiC magnetometer team leads from JPL and GRC (left: Dr. Hannes Kraus, middle: Dr. Phillip Neudeck, right: Dr. Corey Cochrane) at the last International Conference on Silicon Carbide and Related Materials (ICSCRM) where their research is presented annually. Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004) and the NASA Glenn Research Center.
      Project Lead(s):
      Dr. Corey Cochrane, Dr. Hannes Kraus, Jet Propulsion Laboratory/California Institute of Technology
      Dr. Phil Neudeck, David Spry, NASA Glenn Research Center
      Sponsoring Organization(s):
      Science Mission Directorate PICASSO, JPL R&D fund
      Share








      Details
      Last Updated Aug 06, 2024 Related Terms
      Glenn Research Center Jet Propulsion Laboratory Planetary Science Science-enabling Technology Technology Highlights Explore More
      4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization


      Article


      20 hours ago
      4 min read NASA Sends More Science to Space, More Strides for Future Exploration
      Biological and physical investigations aboard the Northrop Grumman Commercial Resupply mission NG-21 included experiments studying…


      Article


      1 day ago
      5 min read NASA Scientists on Why We Might Not Spot Solar Panel Technosignatures


      Article


      4 days ago
      View the full article
    • By NASA
      5 Min Read NASA’s Hubble Traces Dark Matter in Dwarf Galaxy Using Stellar Motions
      This NASA Hubble Space Telescope image reveals a section of the Draco dwarf galaxy. Credits:
      NASA, ESA, Eduardo Vitral, Roeland van der Marel, and Sangmo Tony Sohn (STScI); Image processing: Joseph DePasquale (STScI) The qualities and behavior of dark matter, the invisible “glue” of the universe, continue to be shrouded in mystery. Though galaxies are mostly made of dark matter, understanding how it is distributed within a galaxy offers clues to what this substance is, and how it’s relevant to a galaxy’s evolution.
      While computer simulations suggest dark matter should pile up in a galaxy’s center, called a density cusp, many previous telescopic observations have indicated that it is instead more evenly dispersed throughout a galaxy. The reason for this tension between model and observation continues to puzzle astronomers, reinforcing the mystery of dark matter.
      A team of astronomers has turned toward NASA’s Hubble Space Telescope to try and clarify this debate by measuring the dynamic motions of stars within the Draco dwarf galaxy, a system located roughly 250,000 light-years from Earth. Using observations that spanned 18 years, they succeeded in building the most accurate three-dimensional understanding of stars’ movements within the diminutive galaxy. This required scouring nearly two decades of Hubble archival observations of the Draco galaxy.
      A team of astronomers analyzed observations by NASA’s Hubble Space Telescope taken over a span of 18 years to measure the dynamic motions of stars within the Draco dwarf galaxy. The telescope’s extensive baseline and data archive enabled the team to build the most accurate three-dimensional map of the stars’ movements within the system. These improved measurements are helping to shed “light” on the mysterious qualities and behavior of dark matter, the universe’s invisible “glue.” The left image is from the Digitized Sky Survey (DSS). It presents a wider view of the region. The two right-side images are Hubble views. NASA, ESA, Eduardo Vitral, Roeland van der Marel, and Sangmo Tony Sohn (STScI), DSS; Image processing: Joseph DePasquale (STScI)
      Download this image

      “Our models tend to agree more with a cusp-like structure, which aligns with cosmological models,” said Eduardo Vitral of the Space Telescope Science Institute (STScI) in Baltimore and lead author of the study. “While we cannot definitively say all galaxies contain a cusp-like dark matter distribution, it’s exciting to have such well measured data that surpasses anything we’ve had before.”
      Charting the Movements of Stars
      To learn about dark matter within a galaxy, scientists can look to its stars and their movements that are dominated by the pull of dark matter. A common approach to measure the speed of objects moving in space is by the Doppler Effect – an observed change of the wavelength of light if a star is approaching or receding from Earth. Although this line-of-sight velocity can provide valuable insight, only so much can be gleaned from this one-dimensional source of information.
      Besides moving closer or further away from us, stars also move across the sky, measured as their proper motion. By combining line-of-sight velocity with proper motions, the team created an unprecedented analysis of the stars’ 3D movements.
      “Improvements in data and improvements in modeling usually go hand in hand,” explained Roeland van der Marel of STScI, a co-author of the paper who initiated the study more than 10 years ago. “If you don’t have very sophisticated data or only one-dimensional data, then relatively straightforward models can often fit. The more dimensions and complexity of data you gather, the more complex your models need to be to truly capture all the subtleties of the data.”
      A Scientific Marathon (Not a Sprint)
      Since dwarf galaxies are known to have a higher proportion of dark matter content than other types of galaxies, the team honed in on the Draco dwarf galaxy, which is a relatively small and spheroidal nearby satellite of the Milky Way galaxy.
      “When measuring proper motions, you note the position of a star at one epoch and then many years later measure the position of that same star. You measure the displacement to determine how much it moved,” explained Sangmo Tony Sohn of STScI, another co-author of the paper and the principal investigator of the latest observational program. “For this kind of observation, the longer you wait, the better you can measure the stars shifting.”
      The team analyzed a series of epochs spanning from 2004 to 2022, an extensive baseline that only Hubble could offer, due to the combination of its sharp stable vision and record time in operation. The telescope’s rich data archive helped decrease the level of uncertainty in the measurement of the stars’ proper motions. The precision is equivalent to measuring an annual shift a little less than the width of a golf ball as seen on the Moon from Earth.
      With three dimensions of data, the team reduced the amount of assumptions applied in previous studies and considered characteristics specific to the galaxy – such as its rotation, and distribution of its stars and dark matter – in their own modeling efforts.
      An Exciting Future
      The methodologies and models developed for the Draco dwarf galaxy can be applied to other galaxies in the future. The team is already analyzing Hubble observations of the Sculptor dwarf galaxy and the Ursa Minor dwarf galaxy.
      Studying dark matter requires observing different galactic environments, and also entails collaboration across different space telescope missions. For example, NASA’s upcoming Nancy Grace Roman Space Telescope will help reveal new details of dark matter’s properties among different galaxies thanks to its ability to survey large swaths of the sky.
      “This kind of study is a long-term investment and requires a lot of patience,” reflected Vitral. “We’re able to do this science because of all the planning that was done throughout the years to actually gather these data. The insights we’ve collected are the result of a larger group of researchers that has been working on these things for many years.”
      These results are accepted for publication in The Astrophysical Journal.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More

      Hubble Space Telescope


      Shining a Light on Dark Matter


      Mystery of Galaxy’s Missing Dark Matter Deepens


      Hubble Detects Smallest Known Dark Matter Clumps


      Detailed Dark Matter Map Yields Clues to Galaxy Cluster Growth


      Hubble Focus E-Book: Dark Universe


      NASA’s Curious Universe Podcast: Welcome to the Dark Side


      Dark Matter 101: Looking for the Missing Mass


      All image products for this article

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Abigail Major and Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Eduardo Vitral, Roeland van der Marel, and Sangmo Tony Sohn
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Jul 11, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Dark Matter Dark Matter & Dark Energy Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Shining a Light on Dark Matter



      Dark Matter & Dark Energy



      Roman


      View the full article
  • Check out these Videos

×
×
  • Create New...