Jump to content

Recommended Posts

Posted
low_STSCI-H-p0821a-k-1340x520.png

Call it the case of the missing dwarf. A team of stellar astronomers is engaged in an interstellar CSI (crime scene investigation). They have two suspects, traces of assault and battery, but no corpse. The southern planetary nebula SuWt 2 is the scene of the crime, some 6,500 light-years from Earth in the direction of the constellation Centaurus. SuWt 2 consists of a bright, nearly edge-on glowing ring of gas. Faint lobes extend perpendicularly to the ring, giving the faintest parts of the nebula an hourglass shape. These glowing ejecta are suspected to have been energized by a star that has now burned out and collapsed to a white dwarf. But the white dwarf is nowhere to be found. This color image was taken on Jan. 31, 1995 at the Cerro Tololo Inter-American Observatory in Chile. These results are being presented today at the 212th meeting of the American Astronomical Society in St. Louis, Mo.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Step into the holidays with this picturesque ‘winter wonderland’ scene at the south pole of Mars, captured by ESA’s Mars Express.
      View the full article
    • By NASA
      At the edge of Las Cruces, New Mexico, surrounded by miles of sunbaked earth, NASA’s White Sands Test Facility (WSTF) is quietly shaping the future. There is no flash, no fanfare — the self-contained facility operates as it has since 1962, humbly and in relative obscurity.

      Yet as New Mexico’s space industry skyrockets amid intensifying commercial spaceflight efforts across the state, WSTF feels a new urgency to connect with the community. With the facility’s latest Test and Evaluation Support Team (TEST3) contract now in its third year, Program Manager Michelle Meerscheidt is determined to make a mark.

      “I think it’s very important we increase our public presence,” Meerscheidt said. “We are a significant contributor to NASA’s mission and our country’s aspirations for furthering space exploration.”

      In September, TEST3 leadership joined forces with the City of Las Cruces to support the sixth annual Las Cruces Space Festival, a two-weekend celebration of the region’s rich relationship with the aerospace industry.

      The Test and Evaluation Support Team (TEST3) team — Human Resources Manager Kristina Garcia (left), Program Manager Michelle Meerscheidt, and Deputy Program Manager/Business Manager Karen Lucht — prepares to meet with visitors at the Las Cruces Space Festival Astronomy & Industry Night on Sept. 13, 2024, in Las Cruces, New Mexico. NASA/Anthony Luis Quiterio Alongside WSTF, festival director Alice Carruth is working to open a world that many believe is off limits and others don’t know exists.

      “Unless you’re driving over the mountains regularly and seeing the sign that says, ‘The Birthplace of the U.S. Space and Missile Program,’ you don’t tend to know what’s going on in your backyard,”  Carruth said.

      “The whole premise of the Space Festival is to make people understand what’s going on in their community, to encourage people to think about careers in the space industry, and to inspire the next generation.”

      A featured speaker at the festival’s New Mexico State University Astronomy & Industry Night, Meerscheidt had the chance to do just that.

      “It’s fun to see a lot of young kids that are wide-eyed and excited,” Meerscheidt said. “It’s nice to be able to encourage them to pursue their dreams.”

      Among those wide-eyed festivalgoers was 6-year-old Camilla Medina-Bond, who was confident in her vision for the future.

      “I want to be an astronaut when I grow up,” she said. “I want to visit the Moon.”

      As for the details of her lunar mission, Medina-Bond’s plan is simple: “Just going to see what’s on it.” She has plenty of time to figure out the specifics — after all, giant leaps start with small steps. According to Meerscheidt, the aspiring astronaut has already taken the first and most critical step.

      “That’s what NASA is all about,” Meerscheidt said. “Explore, be inquisitive. Open your mind, open your imagination, and go for it.”

      Left: Camilla Medina-Bond, age 6, proudly shows off her foam stomp rocket and NASA White Sands Test Facility baseball cap during the Las Cruces Space Festival’s Astronomy & Industry Night on the New Mexico State University campus. Right: Medina-Bond immerses herself in another world as she operates a virtual reality headset. NASA/Anthony Luis Quiterio Medina-Bond’s aspiration is shared by many young dreamers. A 2024 global study by longtime NASA partner, the LEGO Group, found 77% of kids ages 4-14 want to travel to space.

      Carruth acknowledged that keeping the attention of today’s always-scrolling, trend-driven generation is not easy, and that children’s fascination with space often wanes as they age.

      “If you look at the statistics, space tends to be really cool until they get to middle school level, and then space isn’t cool anymore — not because it’s not cool, but because it then becomes inaccessible to a lot of students,” she said.

      Still, Carruth is prepared to navigate the challenge.

      “I want kids to understand that space is for everybody,” Carruth said. “I also want their parents and grandparents to understand why space is important and that this is a feasible career.”

      Oscar Castrejon, who attended the festival with his 12-year-old son, Oscar Jr., is on his own mission to nurture that understanding. “I’ve learned early kids need to develop their own passions, but if they say ‘hey, I like this, I’m interested in it,’ then I’ll take them to it,” Castrejon said. “If their eyes get opened, if their imagination gets sparked, you never know — you could be looking at the next NASA scientist.”

      Oscar Castrejon and his son Oscar Jr., age 12, stop by the White Sands TEST3 booth. Anthony Luis Quiterio WSTF TEST3 Deputy Program Manager and Business Manager Karen Lucht shares Castrejon’s philosophy, emphasizing the importance of authenticity.

      “Speak[ing] to who you are as a person will ultimately lead to who you will become as a professional,” she said.

      A remote test site, WSTF has its own ecosystem which Lucht compares to a “small city.” Among its residents are scientists and engineers, but also welders, writers, firefighters, and photographers — to name a few.

      “White Sands offers endless opportunities for everybody,” Lucht said. “Every career has a path here.”

      Lucht’s own journey illustrates the infinite potential that arises in diverse spaces like WSTF.

      “I came from a town of less than a thousand people, and I never dreamt that I would work for NASA,” she said. “As someone who was told many times that I would never make it to my position, I look back on my career and realize there are no restraints. You really can do anything you want to do.”

      For those wanting to join the ranks at WSTF, there is one important requirement: they must see themselves as stardust, a vital element in a grand cosmic plan.

      “We’re looking for people who have the right perspective, the desire to learn and contribute to something bigger than themselves,” Lucht said.

      At WSTF — a place where the stars feel close enough to touch — the sky is not the limit, it is only the beginning.
      View the full article
    • By NASA
      1 Min Read Coming Spring 2025: Planetary Defenders Documentary
      David Rankin, Senior Survey Operations Specialist at Catalina Sky Survey, is seen opening the dome structure surrounding the telescope at the asteroid-hunting facility in Mt. Lemmon, AZ. Credits:
      NASA How would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders is a gripping documentary that delves into the high-stakes world of asteroid detection and planetary defense. Journey alongside a dedicated team of astronomers and scientists working tirelessly to track and monitor near-Earth asteroids, aiming to protect our planet from potential impacts. This documentary captures the intricate and collaborative efforts of these unsung heroes, blending cutting-edge science with personal stories to reveal the human spirit behind this critical global endeavor. Witness the drama, the challenges and the triumphs of those on the front lines of planetary defense.
      The dinosaurs went extinct because they didn’t have a space program. We do have one.
      Dr. vishnu reddy
      Professor of Planetary Science, University of Arizona
      Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth. NASA In 2016, NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing mission of finding, tracking, and better understanding asteroids and comets that could pose an impact hazard to Earth.
      I really like that I am protecting the planet. And yes, I’m not the one that’s with a cape pushing the asteroid away, that’s not what I do. In some ways, my little contribution might not help just myself, but someone in the future, and I think it’s very important to do that.
      Dr. CASSANDRA LEJOLY
      RESEARCHER, SPACEWATCH®
      Dr. Cassandra Lejoly, a researcher with the University of Arizona’s SPACEWATCH® program, sits at a computer console at Kitt Peak National Observatory in Tuscon, AZ, where she conducts follow up observations on near-Earth objects. NASA Planetary Defenders is an original NASA documentary that showcases the challenges and the triumphs of those on the front lines of planetary defense. This documentary will be released on NASA+ and other streaming platforms in Spring 2025. Stay tuned for updates!
      About the Author
      efurfaro

      Share








      Details
      Last Updated Dec 03, 2024 Related Terms
      Planetary Defense Planetary Defense Coordination Office Science Mission Directorate Explore More
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      49 mins ago
      2 min read Hubble Captures an Edge-On Spiral with Curve Appeal


      Article


      2 weeks ago
      5 min read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The guitar shape in the “Guitar Nebula” comes from bubbles blown by particles ejected from the pulsar through a steady wind as it moves through space. A movie of Chandra (red) data taken in 2000, 2006, 2012, and 2021 has been combined with a single image in optical light from Palomar. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years long, blasting away from the pulsar (seen as the bright white dot). The movie shows how this filament has changed over two decades. X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.
      The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).
      Astronomers have nicknamed the structure connected to the pulsar PSR B2224+65 as the “Guitar Nebula” because of its distinct resemblance to the instrument in glowing hydrogen light. The guitar shape comes from bubbles blown by particles ejected from the pulsar through a steady wind. Because the pulsar is moving from the lower right to the upper left, most of the bubbles were created in the past as the pulsar moved through a medium with variations in density.
      X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical: (Hubble) NASA/ESA/STScI and (Palomar) Hale Telescope/Palomar/CalTech; Image Processing: NASA/CXC/SAO/L. Frattare At the tip of the guitar is the pulsar, a rapidly rotating neutron star left behind after the collapse of a massive star. As it hurtles through space it is pumping out a flame-like filament of particles and X-ray light that astronomers have captured with Chandra.
      How does space produce something so bizarre? The combination of two extremes — fast rotation and high magnetic fields of pulsars — leads to particle acceleration and high-energy radiation that creates matter and antimatter particles, as electron and positron pairs. In this situation, the usual process of converting mass into energy, famously determined by Albert Einstein’s E = mc2 equation, is reversed. Here, energy is being converted into mass to produce the particles.
      Particles spiraling along magnetic field lines around the pulsar create the X-rays that Chandra detects. As the pulsar and its surrounding nebula of energetic particles have flown through space, they have collided with denser regions of gas. This allows the most energetic particles to escape the confines of the Guitar Nebula and fly to the right of the pulsar, creating the filament of X-rays. When those particles escape, they spiral around and flow along magnetic field lines in the interstellar medium, that is, the space in between stars.
      The new movie shows the pulsar and the filament flying towards the upper left of the image through Chandra data taken in 2000, 2006, 2012 and 2021. The movie has the same optical image in each frame, so it does not show changes in parts of the “guitar.” A separate movie obtained with data from NASA’s Hubble Space Telescope (obtained in 1994, 2001, 2006, and 2021) shows the motion of the pulsar and the smaller structures around it.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Hubble Space Telescope data: 1994, 2001, 2006, and 2021.X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula, which forms the outline of the guitar, also control changes in how many particles escape to the right of the pulsar, causing subtle brightening and fading of the X-ray filament, like a cosmic blow torch shooting from the tip of the guitar.
      The structure of the filament teaches astronomers about how electrons and positrons travel through the interstellar medium. It also provides an example of how this process is injecting electrons and positrons into the interstellar medium.
      A paper describing these results was published in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two short videos and a labeled composite image, all featuring what can be described as a giant flame-throwing guitar floating in space.
      In both the six second multiwavelength Guitar Nebula timelapse video and the composite image, the guitar shape appears at our lower left, with the neck of the instrument pointing toward our upper left. The guitar shape is ghostly and translucent, resembling a wispy cloud on a dark night. At the end of the neck, the guitar’s headstock comes to a sharp point that lands on a bright white dot. This dot is a pulsar, and the guitar shape is a hydrogen nebula. The nebula was formed when particles being ejected by the pulsar produced a cloud of bubbles. The bubbles were then blown into a curvy guitar shape by a steady wind. The guitar shape is undeniable, and is traced by a thin white line in the labeled composite image.
      The pulsar, known as PSR B2224+65, has also released a long filament of energetic matter and antimatter particles approximately 12 trillion miles long. In both the composite image and the six second video, this energetic, X-ray blast shoots from the bright white dot at the tip of the guitar’s headstock, all the way out to our upper righthand corner. In the still image, the blast resembles a streak of red dots, most of which fall in a straight, densely packed line. The six second video features four separate images of the phenomenon, created with Chandra data gathered in 2000, 2006, 2012, and 2021. When shown in sequence, the density of the X-ray blast filament appears to fluctuate.
      A 12 second video is also included in this release. It features four images that focus on the headstock of the guitar shape. These images were captured by the Hubble Space Telescope in 1994, 2001, 2006, and 2021. When played in sequence, the images show the headstock shape expanding. A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula also control changes in the pulsar’s blast filament. Meaning the same phenomenon that created the cosmic guitar also created the cosmic blowtorch shooting from the headstock.
      View the full article
    • By SpaceX
      Making Life Multi-Planetary
  • Check out these Videos

×
×
  • Create New...