Jump to content

NASA Academy at Langley Research Center


NASA

Recommended Posts

  • Publishers
2 Min Read

NASA Academy at Langley Research Center

2021-academy-group-shot-scaled-1.jpg?w=1
2021 NASA Aeronautics Academy UAS flight test for mapping ability.
Credits: NASA

About the NASA Academy at Langley 

Langley’s NASA Academy’s rigorous and diverse summer research program prioritizes collaboration, teamwork, leadership, innovation, and creativity. 

Academy participants experience the challenges aerospace professionals face while conducting their research. Along with a team research project, the program includes: 

  • Invited lectures on technical topics 
  • Weekly discussions with NASA professionals 
  • Access to NASA’s advanced research facilities 

What are the eligibility requirements?  

  • Be a U.S. Citizen 
  • Be pursuing a major in Engineering (Aero, Computer, Electrical, Mechanical, Systems), Computer Science, Mechatronics, Electronics Technology, Applied Math, Applied Physics, or a similar field.  
  • Be a full-time student or recent graduate with a minimum GPA of 3.2 or higher.  
  • Candidates are preferred to have completed at least three full college years (except for two-year college students transferring to a four-year institution), but those who have completed two full college years are welcome to apply.  

Duration: The summer program runs for 10-12 weeks, from mid-May through August. The exact dates will be determined before the start of the program. 

How to Apply? 

To apply, you must submit a personal statement, a current resume, an unofficial transcript, two letters of recommendation from supervisors or college professors, and contact information (emails/phone) for the two references. Ready to apply? Please visit the Academy Application website to apply and learn more information about the eligibility requirements. 

If you have any questions, please contact Dr. Elizabeth Ward, Program Director, at elizabeth.b.ward@nasa.gov

lrc-2022-b701-p-02452-1-scaled-1.jpg?w=2
Images of 2022 NASA ARD (Aeronautics Research Directorate) MULTIDISCIPLINARY RESEARCH ACADEMY

Learn more about past NASA Academies 

The 2022 Academy had 17 students nationwide and multidisciplinary participation from multiple states. 

The 2021 NASA Academy at Langley Research Center had 23 students from 16 different universities and six different disciplines.  They were able to spend time on the center for one day to test sensors they had developed for a NASA UAV.

Share

Details

Last Updated
Oct 21, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By NASA
      The Roscosmos Soyuz MS-25 spacecraft is pictured docked to the International Space Station’s Prichal module in this long-duration photograph as it orbited 258 miles above Nigeria.Credit: NASA NASA astronaut Tracy C. Dyson, accompanied by Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko, will depart from the International Space Station aboard the Soyuz MS-25 spacecraft, and return to Earth.
      Dyson, Chub, and Kononenko will undock from the orbiting laboratory’s Prichal module at 4:37 a.m. EDT Monday, Sept. 23, heading for a parachute-assisted landing at 8 a.m. (5 p.m. Kazakhstan time) on the steppe of Kazakhstan, southeast of the town of Dzhezkazgan.
      NASA’s live coverage of return and related activities will stream on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      A change of command ceremony also will stream on NASA platforms at 10:15 a.m. Sunday, Sept. 22. Kononenko will hand over station command to NASA astronaut Suni Williams for Expedition 72, which begins at the time of undocking.
      Spanning 184 days in space, Dyson’s mission includes covering 2,944 orbits of the Earth and a journey of 78 million miles. The Soyuz MS-25 spacecraft launched March 23, and arrived at the station March 25, with Dyson, Roscosmos cosmonaut Oleg Novitskiy, and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6.
      Kononenko and Chub, who launched with O’Hara to the station on the Soyuz MS-24 spacecraft last September, will return after 374 days in space and a trip of 158.6 million miles, spanning 5,984 orbits.
      Dyson spent her fourth spaceflight aboard the station as an Expedition 70 and 71 flight engineer, and departs with Kononenko, completing his fifth flight into space and accruing an all-time record 1,111 days in orbit, and Chub, who completed his first spaceflight.
      After returning to Earth, the three crew members will fly on a helicopter from the landing site to the recovery staging city of Karaganda, Kazakhstan. Dyson will board a NASA plane and return to Houston, while Kononenko and Chub will depart for a training base in Star City, Russia.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 22
      10:15 a.m. – Expedition 71/72 change of command ceremony begins on NASA+ and the agency’s website.
      Monday, Sept. 23
      12:45 a.m. – Hatch closing coverage begins on NASA+ and the agency’s website.
      1:05 a.m. – Hatch closing
      4 a.m. – Undocking coverage begins on NASA+ and the agency’s website.
      4:37 a.m. – Undocking
      6:45 a.m. – Coverage begins for deorbit burn, entry, and landing on NASA+ and the agency’s website.
      7:05 a.m. – Deorbit burn
      8 a.m. – Landing
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 19, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Humans in Space ISS Research Johnson Space Center Tracy Caldwell Dyson View the full article
    • By NASA
      4 Min Read NASA’s Hidden Figures Honored with Congressional Gold Medals
      Sen. Shelly Moore Capito (R-WV), delivers remarks during a Congressional Gold Medal ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington. Credits: NASA/Joel Kowsky A simple turn of phrase was all it took for U.S. Sen. Shelley Moore Capito of Katherine Johnson’s home state of West Virginia to capture the feeling in Emancipation Hall at the U.S. Capitol in Washington.
      “It’s been said that Katherine Johnson counted everything,” she said. “But today we’re here to celebrate the one thing even she couldn’t count, and that’s the impact that she and her colleagues have had on the lives of students, teachers, and explorers.”
      That sense of admiration and awe toward the legacy and impact of NASA’s Hidden Figures was palpable Wednesday during a Congressional Gold Medal Ceremony to honor the women’s work and achievements during the space race.
      The Congressional Gold Medal in recognition of Katherine Johnson in recognition of her service to the United States as a Mathematician is seen during a ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington.  Katherine Johnson’s family accepted this gold medal on her behalf.NASA/Joel Kowsky The ceremony, hosted by House Speaker Mike Johnson, honored Johnson, Dorothy Vaughan, Mary Jackson, and Dr. Christine Darden of NASA’s Langley Research Center in Hampton, Virginia, along with all the other women who served at the agency and its precursor, the National Advisory Committee for Aeronautics, or the NACA, as computers, mathematicians, and engineers.
      “The pioneers we honor today, these Hidden Figures — their courage and imagination brought us to the Moon. And their lessons, their legacy, will send us back to the Moon,” said NASA Administrator Bill Nelson.
      Margot Lee Shetterly, whose 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race,” brought awareness to the stories of NASA’s human computers, spoke at the event.NASA/Joel Kowsky Author Margot Lee Shetterly detailed the stories of the women from NASA Langley in her 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.” Though the book focused on NASA Langley, where Shetterly’s father worked, it helped raise awareness of similar stories around NASA.
      A film adaptation of the book starring Taraji Henson as Johnson, Octavia Spencer as Vaughan, and Janelle Monáe as Jackson came out later that year and further elevated the topic. NASA participated under a Space Act Agreement with 20th Century Fox in activities around the movie, to provide historical guidance and advice during the filmmaking process.
      In her remarks, Shetterly noted that even as the Hidden Figures made such key contributions to NASA and the NACA before it, they remained active in their communities, leading Girl Scout troops and delivering meals to the hungry.
      “They spent countless hours tutoring kids so that those kids, too, would see the power and the beauty of numbers they believed in, tending to the small D democracy that binds us to each other as neighbors and as American citizens,” she said.
      The medal citations were as follows:
      Congressional Gold Medal to Katherine Johnson, in recognition of her service to the United States as a mathematician Congressional Gold Medal to Dr. Christine Darden, for her service to the United States as an aeronautical engineer Congressional Gold Medals in commemoration of the lives of Dorothy Vaughan and Mary Jackson, in recognition of their service to the United States during the space race Congressional Gold Medal in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee Family members of Johnson, Vaughn, Jackson and Dr. Darden accepted medals on their behalves. Dr. Darden watched the ceremony from home.
      House Speaker Mike Johnson and Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples. Mosie accepted the medal awarded in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee for Aeronautics and NASA between the 1930s and the 1970s.NASA/Joel Kowsky Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples, accepted the medal awarded to all NASA’s Hidden Figures. She began her career at NASA’s Johnson Space Center in Houston in the 1970s.
      Mosie thanked Congress for supporting NASA’s campaign to send the first woman and first person of color to the Moon as part of Artemis and the agency’s efforts to provide “opportunities for people, more representative of the way our country looks, to understand humanity’s place in the universe.”
      Several NASA Langley officials attended the event to honor the legacies of the women who worked there.
      “I am humbled by the significant contributions and lasting impact of these women to America’s aeronautics and space programs. Their brilliance and perseverance still echo not just through the halls of NASA Langley, but through the entire Agency,” said NASA Langley’s Acting Center Director Dawn Schaible. “They are an inspiration to me and countless others who have benefited from the paths they forged.”
      Rep. Eddie Bernice Johnson of Texas, who passed away in 2023, introduced H.R. 1396 – Hidden Figures Congressional Gold Medal Act on Feb. 27, 2019. It was signed into law later that year.
      In 2015, President Barack Obama presented Katherine Johnson with the Presidential Medal of Freedom, the nation’s highest civilian honor.
      Brittny McGraw and Joe Atkinson
      NASA Langley Research Center
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Langley Research Center Explore More
      4 min read Going Back-to-School with NASA Data
      Article 3 days ago 3 min read Like a Diamond in the Sky: How to Spot NASA’s Solar Sail Demo in Orbit
      Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators 
      Article 3 weeks ago View the full article
    • By NASA
      Students participating in NASA’s Minority University Research AND Education Project (MUREP) Innovation and Tech Transfer Idea Competition on-site experience. Credit: Josh Valcarcel NASA is awarding $7.2 million to six minority-serving institutions to grow initiatives in engineering-related disciplines and fields for learners who have historically been underrepresented and underserved in science, technology, engineering, and math (STEM) fields.
      “NASA is excited to award funding to six minority-serving institutions, paving the way for greater diversity in engineering and STEM,” said Shahra Lambert, NASA senior advisor for engagement and equity, NASA’s Headquarters in Washington. “NASA is committed to fostering diversity and providing essential academic resources to empower the next generation of innovators.” 
      NASA’s Minority University Research and Education Project (MUREP), in partnership with the National Science Foundation’s Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) network, provides support to increase diversity in engineering. It offers academic resources to college students, aiming to have a long-term impact on the engineering field.
      “With these awards, we are continuing to create pathways that increase access and opportunities in STEM for underrepresented and underserved groups,” said Keya Briscoe, MUREP manager. “NASA continues to invest in initiatives that are critical in driving innovation, fostering inclusion, and providing access to the STEM ecosystem for everyone.”
      The awardees and their project titles are as follows:
      Alabama A&M University Pathways to NASA: Empowering Underrepresented STEM Talent through Strategic Partnerships and Innovative Learning
      Morgan State University – Baltimore Developing NASA Pathways to Broadening Participation in Space Exploration Technology
      North Carolina Agricultural and Technical State University Strengthening Opportunities in Aerospace Research and Education
      University of Central Florida Hy-POWERED: Hydrogen-POWered Engineering Research and Education for Diversity
      University of Colorado, Denver Seed, Support, and Cultivate: Innovative Strategies for Underrepresented Minorities in STEM Education
      University of Houston Partnership for Inclusivity in Engineering Education and Research for Space
      NASA administers the grants through its Office of STEM Engagement. These investments enhance the research, academic and technology capabilities of minority-serving institutions through multiyear cooperative agreements, while advancing NASA’s vision for a diverse and inclusive workforce.
      To learn more about NASA STEM Engagement Funding Opportunities, visit:
      https://go.nasa.gov/3AZedZ8
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-269-1600
      Abbey.a.donaldson@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...