Jump to content

30 Years Ago: The STS-58 Spacelab Life Sciences-2 Mission


NASA

Recommended Posts

  • Publishers

On Oct. 18, 1993, space shuttle Columbia lifted off in support of the STS-58 Spacelab Life Sciences 2 (SLS-2) mission to conduct cutting edge research on physiological adaptation to spaceflight. The seven-member crew of STS-58 consisted of Commander John E. Blaha, Pilot Richard A. Searfoss, Payload Commander Dr. M. Rhea Seddon, Mission Specialists William S. McArthur, Dr. David A. Wolf, and Shannon M. Lucid, and Payload Specialist Dr. Martin J. Fettman, the first veterinarian in space. Dr. Jay C. Buckey  and Laurence R. Young served as alternate payload specialists. During the second dedicated life sciences shuttle mission, they conducted 14 experiments to study the cardiovascular, pulmonary, regulatory, neurovestibular, and musculoskeletal systems to provide a better understanding of physiological responses to spaceflight. The 14-day mission ended on Nov. 1, the longest shuttle flight up to that time.

STS-58 astronauts David A. Wolf, seated left, Shannon M. Lucid, M. Rhea Seddon, and Richard A. Searfoss; John E. Blaha, standing left, William S. McArthur, and Martin J. Fettman The STS-58 crew patch The Spacelab Life Sciences 2 mission patch
Left: STS-58 astronauts David A. Wolf, seated left, Shannon M. Lucid, M. Rhea Seddon, and Richard A. Searfoss; John E. Blaha, standing left, William S. McArthur, and Martin J. Fettman. Middle: The STS-58 crew patch. Right: The Spacelab Life Sciences 2 mission patch.

As its name implies, SLS-2 was the second space shuttle mission dedicated to conducting life sciences research. Because of an oversubscription in the original Spacelab-4 mission, managers decided to split the research flight into two missions to optimize the science return for the principal investigators. The nine-day SLS-1 mission flew in June 1991, its seven-member crew conducting nine life science experiments. Because of her experience as a mission specialist on SLS-1, managers named Seddon as the payload commander for SLS-2. Eight of the 14 experiments used the astronauts as test subjects, and six used 48 laboratory rats housed in 24 cages in the Rodent Animal Holding Facility.

Liftoff of space shuttle Columbia on the STS-58 Spacelab Life Sciences 2 mission View of the Spacelab module in Columbia’s payload bay
Left: Liftoff of space shuttle Columbia on the STS-58 Spacelab Life Sciences 2 mission. Right: View of the Spacelab module in Columbia’s payload bay.

Space shuttle Columbia’s 15th liftoff took place at 10:53 a.m. EST on Oct. 18, 1993, from Launch Pad 39B at NASA’s Kennedy Space Center (KSC) in Florida, carrying the SLS-2 mission into space. Blaha, making his fourth trip into space and second as commander, and Pilot Searfoss on his first launch, monitored Columbia’s systems as they climbed into orbit, assisted by McArthur, also on his first flight, serving as the flight engineer. Seddon, making her third trip into space, accompanied them on the flight deck. Wolf, Lucid, and Fettman experienced launch in the shuttle’s middeck. Upon reaching orbit, the crew opened the payload bay doors, thus deploying the shuttle’s radiators. Shortly after, the crew opened the hatch from the shuttle’s middeck, translated down the transfer tunnel, and entered Spacelab for the first time, activating the module, and getting to work on the experiments, including the first blood draws for the regulatory physiology experiments. The blood samples, stored in the onboard refrigerator for postflight analysis, investigated calcium loss in bone and parameters of fluid and electrolyte regulation.

Dr. David A. Wolf draws a blood sample from Dr. Martin J. Fettman as part of a regulatory physiology experiment Payload Commander Dr. M. Rhea Seddon processes blood samples William S. McArthur uses a metabolic gas analyzer to monitor his pulmonary or lung function
Left: Dr. David A. Wolf draws a blood sample from Dr. Martin J. Fettman as part of a regulatory physiology experiment. Middle: Payload Commander Dr. M. Rhea Seddon processes blood samples.  Right: William S. McArthur uses a metabolic gas analyzer to monitor his pulmonary or lung function.

During the 14-day mission, the seven-member SLS-2 crew served as both experiment subjects and operators. The majority of the science activities took place in the Spacelab module mounted in the shuttle’s payload bay, with SLS-2 marking the ninth flight of the ESA-built pressurized module since its first flight on STS-9 in 1983. The experiments had, of course, begun long before launch with extensive baseline data collection. For Lucid and Fettman, data collection for one of the cardiovascular experiments began four hours before launch and continued through ascent and for the first day or so of the mission. Both volunteered to have catheters threaded through an arm vein and into their hearts to directly measure the effect on central venous pressure from the fluid shift caused by the transition to weightlessness.

Views of the rotating dome experiment Views of the rotating dome experiment
Two views of the rotating dome experiment, used to measure astronauts’ motion perception, with John E. Blaha, left, and Dr. M. Rhea Seddon, as test subjects.

View of the rotating chair View of the rotating chair
Two views of the rotating chair, with Dr. Martin J. Fettman as the subject and Dr. M. Rhea Seddon as the operator, used to test the astronauts’ vestibular systems.

A group of experiments studied the astronauts’ sensory motor adaptation to spaceflight. In one study, the astronauts placed their heads inside a rotating dome with colored dots painted on its inside surface. Using a joystick, the astronauts indicated in which direction they perceived the rotation of the dots. A rotating chair measured how reflexive eye movements change in weightlessness. Using a bungee harness to simulate falling, astronauts reported on their sensation of and their reflexes to “falling” in microgravity.

Earth observation photographs taken by the STS-58 crew. Memphis, Tennessee Earth observation photographs taken by the STS-58 crew. The Richat Structure in Mauritania Earth observation photographs taken by the STS-58 crew. Cyprus, Türkiye, and the eastern Mediterranean Sea. Earth observation photographs taken by the STS-58 crew. Tokyo Bay
A selection of the Earth observation photographs taken by the STS-58 crew. Left: The Memphis, Tennessee, area. Middle left: The Richat Structure in Mauritania. Middle right: Cyprus, Türkiye, and the eastern Mediterranean Sea. Right: Tokyo Bay.

In addition to the complex set of SLS-2 experiments, the STS-58 astronauts’ activities also included other science and operational items. They conducted several experiments as part of the Extended Duration Orbiter Medical Program, including the use of lower body negative pressure as a potential countermeasure to cardiovascular changes, in particular orthostatic intolerance, as shuttle missions flew ever longer missions. The astronauts talked to ordinary people on the ground using the Shuttle Amateur Radio Experiment, or ham radio. As on all missions, they enjoyed looking at the Earth. When not participating as a test subject for the various experiments or needing to monitor Columbia’s systems, Searfoss in particular took advantage of their unique vantage point, taking more than 4,000 photographs of the Earth below. Blaha and Searfoss tested the Portable In-flight Landing Operations Trainer (PILOT), a laptop computer to help them maintain proficiency in landing the shuttle.

STS-58 astronauts William A. McArthur, top, Martin J. Fettman, David A. Wolf, Richard A. Searfoss, John E. Blaha, M. Rhea Seddon, and Shannon M. Lucid inside the Spacelab module McArthur operates the Shuttle Amateur Radio Experiment, or ham radio Pilot Searfoss uses the Portable In-flight Landing Operations Simulator, a laptop computer to practice landing the space shuttle
Left: STS-58 astronauts William A. McArthur, top, Martin J. Fettman, David A. Wolf, Richard A. Searfoss, John E. Blaha, M. Rhea Seddon, and Shannon M. Lucid inside the Spacelab module. Middle: McArthur operates the Shuttle Amateur Radio Experiment, or ham radio. Right: Pilot Searfoss uses the Portable In-flight Landing Operations Simulator, a laptop computer to practice landing the space shuttle.

On their last day in space, the astronauts finished the experiments, Wolf deactivated the Spacelab module, and they strapped themselves into their seats to prepare for the return to Earth. They fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Blaha piloted Columbia to a smooth landing on Runway 22 at Edwards Air Force Base in California’s Mojave Desert on Nov. 1, after completing 225 orbits around the Earth in 14 days and 12 minutes. The astronauts exited Columbia about one hour after landing and transferred to the Crew Transport Vehicle, a converted people-mover NASA purchased from Dulles International Airport near Washington, D.C. This allowed them to remain in a supine position to minimize the effects of gravity on the early postflight measurements. While Blaha, Searfoss, and McArthur returned to Houston a few hours after landing, Seddon, Wolf, Lucid, and Fettman continued extensive data collection at the Dryden, now Armstrong, Fight Research Center at Edwards for several days before returning to Houston. Ground crews towed Columbia from the runway to the Mate-Demate Facility to begin preparing it for its ferry flight back to KSC atop the Shuttle Carrier Aircraft and its next mission, STS-62, the United States Microgravity Payload-2 mission.

Space Shuttle Columbia lands at NASA’s Kennedy Space Center in Florida to end the 14-day STS-58 Spacelab Life Sciences 2 (SLS-2) mission The seven STS-58 SLS-2 crew members have exited Columbia and transferred to the Crew Transport Vehicle to begin postflight data collection
Left: Space Shuttle Columbia lands at NASA’s Kennedy Space Center in Florida to end the 14-day STS-58 Spacelab Life Sciences 2 (SLS-2) mission. Right: The seven STS-58 SLS-2 crew members have exited Columbia and transferred to the Crew Transport Vehicle to begin postflight data collection.

Summarizing the scientific return from the flight, Mission Scientist Howard J. Schneider said, “All of our accomplishments exceeded our expectations.” Program Scientist Frank M. Sulzman added, “This has been the best shuttle mission for life sciences to date.” Principal investigators published the results of the experiments from SLS-1 and SLS-2 in a special edition of the Journal of Applied Physiology in July 1996. Enjoy the crew-narrated video about the STS-58 SLS-2 mission.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
    • By SpaceX
      Making Life Multi-Planetary
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...