Members Can Post Anonymously On This Site
NASA’s Webb Discovers New Feature in Jupiter’s Atmosphere
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past.
Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water.
Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color.
The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago.
“The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.”
Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study.
The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions.
“What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.”
Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis.
“The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.”
Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington.
By William Steigerwald
NASA Goddard Space Flight Center, Greenbelt, Maryland
Share
Details
Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related Terms
The Solar System Mars Explore More
5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
NASA and its international partners are making progress on Gateway – the lunar space station…
Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind,…
Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51
So how long does it take to get from Earth to the Moon, to Mars…
Article 6 days ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
Explore More NASA Stennis Images View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / Getty Images NASA has selected two new university student teams to participate in real-world aviation research challenges meant to transform the skies above our communities.
The research awards were made through NASA’s University Student Research Challenge (USRC), which provides students with opportunities to contribute to NASA’s flight research goals.
This round is notable for including USRC’s first-ever award to a community college: Cerritos Community College.
We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics.
steven holz
NASA Project Manager
“We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics,” said Steven Holz, who manages the USRC award process. “Innovation comes from everywhere, and people with different viewpoints, educational backgrounds, and experiences like those in our community colleges are also interested in aeronautics and looking to make a difference.”
Real World Research Awards
Through USRC, students interact with real-world aspects of the research ecosystem both in and out of the laboratory. They will manage their own research projects, utilize state-of-the-art technology, and work alongside accomplished aeronautical researchers. Students are expected to make unique contributions to NASA’s research priorities.
USRC provides more than just experience in technical research.
Each team of students selected receives a USRC grant from NASA – and is tasked with the additional challenge of raising funds from the public through student-led crowdfunding. The process helps students develop skills in entrepreneurship and public communication.
The new university teams and research topics are:
Cerritos Community College
“Project F.I.R.E. (Fire Intervention Retardant Expeller)” will explore how to mitigate wildfires by using environmentally friendly fire-retardant pellets dropped from drones. Cerritos Community College’s team includes lead Angel Ortega Barrera as well as Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, and Juan Villa, with faculty mentor Janet McLarty-Schroeder. This team also successfully participated with the same research topic in in NASA’s Gateway to Blue Skies competition, which aims to expand engagement between the NASA’s University Innovation project and universities, industry, and government partners.
Colorado School of Mines
The project “Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan” will work on a scaled-down prototype for an electric turbofan for supersonic aircraft. The Colorado School of Mines team includes lead Mahzad Gholamian as well as Garret Reader, Mykola Mazur, and Mirali Seyedrezaei, with faculty mentor Omid Beik.
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
Article 1 week ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 1 week ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Feb 18, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
-
By NASA
5 Min Read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Credits:
NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) Discovery proves decades-old theory of galaxy feeding cycle.
Researchers using NASA’s James Webb Space Telescope have finally solved the mystery of how a massive galaxy cluster is forming stars at such a high rate. The confirmation from Webb builds on more than a decade of studies using NASA’s Chandra X-ray Observatory and Hubble Space Telescope, as well as several ground-based observatories.
The Phoenix cluster, a grouping of galaxies bound together by gravity 5.8 billion light-years from Earth, has been a target of interest for astronomers due to a few unique properties. In particular, ones that are surprising: a suspected extreme cooling of gas and a furious star formation rate despite a roughly 10 billion solar mass supermassive black hole at its core. In other observed galaxy clusters, the central supermassive black hole powers energetic particles and radiation that prevents gas from cooling enough to form stars. Researchers have been studying gas flows within this cluster to try to understand how it is driving such extreme star formation.
Image A: Phoenix Cluster (Hubble, Chandra, VLA Annotated)
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Webb’s powerful sensitivity in the mid-infrared detected the cooling gas that leads to a furious rate of star formation in this massive galaxy cluster. Credit: NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) “We can compare our previous studies of the Phoenix cluster, which found differing cooling rates at different temperatures, to a ski slope,” said Michael McDonald of the Massachusetts Institute of Technology in Cambridge, principal investigator of the program. “The Phoenix cluster has the largest reservoir of hot, cooling gas of any galaxy cluster — analogous to having the busiest chair lift, bringing the most skiers to the top of the mountain. However, not all of those skiers were making it down the mountain, meaning not all the gas was cooling to low temperatures. If you had a ski slope where there were significantly more people getting off the ski lift at the top than were arriving at the bottom, that would be a problem!”
To date, in the Phoenix cluster, the numbers weren’t adding up, and researchers were missing a piece of the process. Webb has now found those proverbial skiers at the middle of the mountain, in that it has tracked and mapped the missing cooling gas that will ultimately feed star formation. Most importantly, this intermediary warm gas was found within cavities tracing the very hot gas, a searing 18 million degrees Fahrenheit, and the already cooled gas around 18,000 degrees Fahrenheit.
The team studied the cluster’s core in more detail than ever before with the Medium-Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This tool allows researchers to take two-dimenstional spectroscopic data from a region of the sky, during one set of observations.
“Previous studies only measured gas at the extreme cold and hot ends of the temperature distribution throughout the center of the cluster,” added McDonald. “We were limited — it was not possible to detect the ‘warm’ gas that we were looking for. With Webb, we could do this for the first time.”
Image B: Phoenix Cluster (Hubble, Chandra, VLA)
This image of the Phoenix cluster combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory, and the Very Large Array radio telescope. X-rays from Chandra depict extremely hot gas in purple. Optical light data from Hubble show galaxies in yellow, and filaments of cooler gas where stars are forming in light blue. Outburst generated jets, represented in red, are seen in radio waves by the VLA radio telescope. NASA, CXC, NRAO, ESA, M. McDonald (MIT). A Quirk of Nature
Webb’s capability to detect this specific temperature of cooling gas, around 540,000 degrees Fahrenheit, is in part due to its instrumental capabilities. However, the researchers are getting a little help from nature, as well.
This oddity involves two very different ionized atoms, neon and oxygen, created in similar environments. At these temperatures, the emission from oxygen is 100 times brighter but is only visible in ultraviolet. Even though the neon is much fainter, it glows in the infrared, which allowed the researchers to take advantage of Webb’s advanced instruments.
“In the mid-infrared wavelengths detected by Webb, the neon VI signature was absolutely booming,” explained Michael Reefe, also of the Massachusetts Institute of Technology, lead author on the paper published in Nature. “Even though this emission is usually more difficult to detect, Webb’s sensitivity in the mid-infrared cuts through all of the noise.”
The team now hopes to employ this technique to study more typical galaxy clusters. While the Phoenix cluster is unique in many ways, this proof of concept is an important step towards learning about how other galaxy clusters form stars.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research paper published in Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Article: Large-scale Structures
Article: Phoenix Galaxy Cluster’s black hole
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
View the full article
-
By NASA
The ring of light surrounding the center of the galaxy NGC 6505, captured by ESA’s Euclid telescope, is an example of an Einstein ring. NGC 6505 is acting as a gravitational lens, bending light from a galaxy far behind it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, G. Anselmi, T. Li; CC BY-SA 3.0 IGO or ESA Standard Licence Euclid, an ESA (European Space Agency) mission with NASA contributions, has made a surprising discovery in our cosmic backyard: a phenomenon called an Einstein ring.
An Einstein ring is light from a distant galaxy bending to form a ring that appears aligned with a foreground object. The name honors Albert Einstein, whose general theory of relativity predicts that light will bend and brighten around objects in space.
In this way, particularly massive objects like galaxies and galaxy clusters serve as cosmic magnifying glasses, bringing even more distant objects into view. Scientists call this gravitational lensing.
Euclid Archive Scientist Bruno Altieri noticed a hint of an Einstein ring among images from the spacecraft’s early testing phase in September 2023.
“Even from that first observation, I could see it, but after Euclid made more observations of the area, we could see a perfect Einstein ring,” Altieri said. “For me, with a lifelong interest in gravitational lensing, that was amazing.”
The ring appears to encircle the center of a well-studied elliptical galaxy called NGC 6505, which is around 590 million light-years from Earth in the constellation Draco. That may sound far, but on the scale of the entire universe, NGC 6505 is close by. Thanks to Euclid’s high-resolution instruments, this is the first time that the ring of light surrounding the galaxy has been detected.
Light from a much more distant bright galaxy, some 4.42 billion light-years away, creates the ring in the image. Gravity distorted this light as it traveled toward us. This faraway galaxy hasn’t been observed before and doesn’t yet have a name.
“An Einstein ring is an example of strong gravitational lensing,” explained Conor O’Riordan, of the Max Planck Institute for Astrophysics, Germany, and lead author of the first scientific paper analyzing the ring. “All strong lenses are special, because they’re so rare, and they’re incredibly useful scientifically. This one is particularly special, because it’s so close to Earth and the alignment makes it very beautiful.”
Einstein rings are a rich laboratory for scientists to explore many mysteries of the universe. For example, an invisible form of matter called dark matter contributes to the bending of light into a ring, so this is an indirect way to study dark matter. Einstein rings are also relevant to the expansion of the universe because the space between us and these galaxies — both in the foreground and the background — is stretching. Scientists can also learn about the background galaxy itself.
“I find it very intriguing that this ring was observed within a well-known galaxy, which was first discovered in 1884,” said Valeria Pettorino, ESA Euclid project scientist. “The galaxy has been known to astronomers for a very long time. And yet this ring was never observed before. This demonstrates how powerful Euclid is, finding new things even in places we thought we knew well. This discovery is very encouraging for the future of the Euclid mission and demonstrates its fantastic capabilities.”
A close-up view of the center of the NGC 6505 galaxy, with the bright Einstein ring aligned with it, captured by ESA’s Euclid space telescope.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, G. Anselmi, T. Li; CC BY-SA 3.0 IGO or ESA Standard Licence By exploring how the universe has expanded and formed over its cosmic history, Euclid will reveal more about the role of gravity and the nature of dark energy and dark matter. Dark energy is the mysterious force that appears to be causing the universe’s expansion. The space telescope will map more than a third of the sky, observing billions of galaxies out to 10 billion light-years. It is expected to find around 100,000 strong gravitational lenses.
“Euclid is going to revolutionize the field with all this data we’ve never had before,” added O’Riordan.
Although finding this Einstein ring is an achievement, Euclid must look for a different, less visually obvious type of gravitational lensing called “weak lensing” to help fulfil its quest of understanding dark energy. In weak lensing, background galaxies appear only mildly stretched or displaced. To detect this effect, scientists will need to analyze billions of galaxies.
Euclid launched from Cape Canaveral, Florida, July 1, 2023, and began its detailed survey of the sky Feb. 14, 2024. The mission is gradually creating the most extensive 3D map of the universe yet. The Einstein ring find so early in its mission indicates Euclid is on course to uncover many more secrets of the universe.
More About Euclid
Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, NASA’s Jet Propulsion Laboratory led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
Media Contacts
Elizabeth Landau
Headquarters, Washington
202-358-0845
elandau@nasa.gov
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.