Jump to content

The Marshall Star for October 18, 2023


NASA

Recommended Posts

  • Publishers
24 Min Read

The Marshall Star for October 18, 2023

Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
Credits: NASA

Marshall Managers Win Top Federal Award for DART Asteroid Deflection Mission

By Rick Smith

Brian Key and Scott Bellamy of NASA’s Marshall Space Flight Center accepted the Samuel J. Heyman Service to America Medals, presented by Partnership for Public Service Oct. 17 during a ceremony at the John F. Kennedy Center for Performing Arts in Washington.

The awards program for career federal employees, known as the Sammies, aims to highlight key accomplishments that benefit the nation, seeks to build trust in government, and inspire people to consider careers in public service.

Scott Bellamy, left, and Brian Key, right, stop for a photo moments after receiving the Samuel J. Heyman Service to America Medals. Bellamy and Key accepted on behalf of the entire DART team during a ceremony at the John F. Kennedy Center for Performing Arts in Washington on Oct. 17.
Scott Bellamy, left, and Brian Key, right, pictured moments after receiving the Samuel J. Heyman Service to America Medals, known as the Sammies. Bellamy and Key accepted the prestigious awards on behalf of the entire DART (Double Asteroid Redirection Test) team during a ceremony on Oct. 17 at the John F. Kennedy Center for Performing Arts in Washington
Partnership for Public Service/Allison Shelley

Key and Bellamy led NASA’s DART (Double Asteroid Redirection Test) team, which successfully altered the orbit of an asteroid in September 2022, providing the first-ever planetary defense test capable of protecting Earth from celestial threats.

As part of the PMPO (Planetary Missions Program Office) at Marshall, Key and Bellamy served as program manager and mission manager, respectively, for DART. For their work on the mission, the duo was honored in the Science, Technology, and Environment category of the Sammie awards.

“DART was a first-of-its-kind mission that marked a watershed moment for planetary defense. The DART team members are some of the very best of NASA, and we are so excited to see Brian Key and Scott Bellamy recognized for their contributions and leadership,” NASA Administrator Bill Nelson said. “Brian, Scott, and the entire DART team have shaped the course of human space exploration, inspiring people around the world through innovation. Thanks to their dedication and hard work, NASA is better prepared to defend our home planet, and will be ready for whatever the universe throws at us.”

In his role on DART, Key maintained budget, staff, and schedule oversight for the mission and worked directly with DART spacecraft developers at Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

“I’m elated to see our team honored with this award, and hope it will bring more attention to the valuable work NASA does to protect our home world,” said Key, who as program manager oversees NASA’s science exploration portfolio spanning the Discovery Program, the New Horizons Program, and the Solar System Exploration Program, which covers the full range of large and small science missions exploring the solar system, planets, and other targets of interest.

Bellamy was tasked with keeping the team on track to launch and execute the mission – echoed Key’s praise for the entire DART team.

“We’re just the managers,” he said. “Our role has been to serve the team, keeping things moving forward as smoothly as possible to enable them to do the actual hands-on, pencil-to-hardware that brought this mission from concept to reality.”

That mission could not have gone more flawlessly, they agreed. Launched in November 2021, the DART spacecraft traveled to more than 6.8 million miles from Earth with one simple goal: to intentionally impact into Dimorphos, a 492-foot-diameter asteroid, at roughly 14,000 miles per hour, thus altering its orbit around its much larger parent asteroid, Didymos. DART’s collision with Dimorphos altered the asteroid’s roughly 12-hour orbit period around its parent by about a half-hour.

DART spacecraft.
An illustration of the DART spacecraft.
NASA

“I don’t even have the words to describe the release of emotion in the control room when we got confirmation that DART had impacted,” Bellamy said. “The whole team went from nail-biting suspense to unbelievable excitement in a matter of seconds.”

Neither Key, Bellamy, nor the Planetary Missions Program Office is resting on these newly acquired laurels.

Key continues to serve as program manager on NASA’s Juno mission, which since its arrival at Jupiter in 2016 has sought new clues about the gas giant’s evolution and role in the formation of our solar system. He’s also program manager for NASA’s Psyche mission, launched Oct. 13 to begin a six-year journey to study a metal-rich asteroid of the same name in solar orbit between Mars and Jupiter.

Bellamy, meanwhile, is mission manager for NASA’s Lucy mission, which over a 12-year period will tour the asteroid belt between Mars and Jupiter and closely study seven Jovian asteroids. Launched in 2021, Lucy will be the first spacecraft ever to return to Earth from the outer solar system. Bellamy also leads development of NASA’s Europa Clipper mission, which could launch in late 2024 to fly to Jupiter’s moon and conduct an intensive survey of the potentially life-sustaining seas beneath Europa’s icy surface.

As for future planetary defense activities, NASA and its partners will build on DART’s success. A follow-up mission by ESA (European Space Agency), called Hera, is scheduled to launch in 2024 to further assess DART’s impact on Dimorphos. NASA also is developing the NEO Surveyor mission, which is designed to accelerate the rate at which the agency can discovery potentially hazardous near-Earth objects, asteroids and comets which can come close to Earth and could pose an impact risk.

“Even small asteroids could do a tremendous amount of damage to a city or metropolitan area,” Key said. “We need to be more aware of the very real threat they pose and develop the means to avoid calamity.”

Johns Hopkins Applied Physics Laboratory managed the DART mission for NASA’s Planetary Defense Coordination Office. The agency provided support for the mission from several centers, including the Jet Propulsion Laboratory, Goddard Space Flight Center, Johnson Space Center, Glenn Research Center, and Langley Research Center.

Created in 2002, the Samuel J. Heyman Service to America Medals, named for the organization’s late founder, recognize excellence and leadership in the federal government. Presented annually by the nonprofit Partnership for Public Service, the awards honor public servants whose significant achievements help the nation innovate, engage globally, and deliver vital services to the public. Learn more about the awards.

Smith, a Manufacturing Technical Solutions employee, supports Marshall’s Office of Communications.

› Back to Top

Mission Success is in Our Hands to Showcase New Look at Oct. 19 Event

By Wayne Smith

An initiative highlighting mission success and the safety culture at NASA’s Marshall Space Flight Center will showcase a new look at its Oct. 19 event.

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs Engineering. As part of the final Shared Experiences Forum of the year, the Mission Success committee will display eight new testimonial banners featuring Marshall team members as part of its rebranding. The banners will be placed across the center.

Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands Shared Experiences Forum speaker Oct. 19. The forum is available to the public virtually through Teams.
Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands Shared Experiences Forum speaker Oct. 19. The forum is available to the public virtually through Teams.

Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands hybrid Shared Experiences Forum speaker from 11:30 a.m. to 1 p.m. Oct. 19. Marshall team members are encouraged to attend the meeting in Building 4203, Room 1201. Light refreshments will be served. The forum is available to NASA employees and the public virtually via Teams.

Harencak will share his experiences in working and leading nuclear safety, high hazard projects, and conducting operations in the nuclear and national security industries.

“The Mission Success is in Our Hands initiative brings awareness to our workforce of the importance of their individual contributions to the overall success of the NASA and Marshall missions,” said Bill Hill, director of the Safety and Mission Assurance Directorate at Marshall. “Through our banners, the Golden Eagle award, and the Shared Experience Forum, we highlight the risk environment in which we work and in which our launch vehicles and spacecraft operate. Many Shared Experiences Forum events bring in risk practitioners from other industries to provide a comparison and illuminate lessons learned that we could gain from in our everyday activities and missions.”

Hill said Marshall has a strong safety culture. The new banners feature team members expressing that message to the workforce and they will be featured with individual profiles in upcoming editions of the Marshall Star..

“The Mission Success is in Our Hands initiative is one of the few tools that we employ at Marshall to keep Safety and Mission Success in the forefront of everyone’s mind,” Hill said. “It is important that we keep people safe at work and allow all to go home at night healthy and safe. Our Incident and Injury Free workshops, which we are soon to begin in-person sessions, offer our employees the opportunity to learn how to identify risky or unsafe behaviors and situations, and how to have those critical conversations to mitigate or eliminate those behaviors among colleagues before an incident or injury occurs.”

Eight NASA Marshall Flight Center team members will be featured in new testimonial banners that will be placed around the center as part of the Mission Success is in Our Hands initiative The banners will feature, from left, Matthew Pruitt, Human Landing System schedule lead; Brandon Reeves, Integrated Avionics Test Facilities deputy manager; Dr. Greg Drayer, Jacobs/Aerodyne Modeling & Simulation technical fellow; Dr. Chelsi Cassilly, Jacobs Planetary Protection microbiologist; Jeramie Broadway, strategy lead; Dr. Baraka Truss, Avionics & Software Branch chief; Ashley Marlar, Jacobs Operations Support team lead; and Dr. Amit Patel, Jacobs Solid Rocket Motor design engineer.
Eight NASA Marshall Flight Center team members will be featured in new testimonial banners that will be placed around the center as part of the Mission Success is in Our Hands initiative The banners will feature, from left, Matthew Pruitt, Human Landing System schedule lead; Brandon Reeves, Integrated Avionics Test Facilities deputy manager; Dr. Greg Drayer, Jacobs/Aerodyne Modeling & Simulation technical fellow; Dr. Chelsi Cassilly, Jacobs Planetary Protection microbiologist; Jeramie Broadway, strategy lead; Dr. Baraka Truss, Avionics & Software Branch chief; Ashley Marlar, Jacobs Operations Support team lead; and Dr. Amit Patel, Jacobs Solid Rocket Motor design engineer.
NASA/Charles Beason

Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group, said team members working on NASA missions must not lose sight of the hazards present in the workplace or the risks of crewed spaceflight.

“The Shared Experiences Forum is probably our most impactful initiative,” Haars said. “Leaders from across NASA and industry share their personal experiences around safety and mission success. The forum provides an opportunity for learning and applying lessons and best practices from personal experiences. Ultimately, our goal is to help team members keep safety and mission assurance in their day to day decision making.”

Since 2015, the Golden Eagle Award has been presented by Mission Success is in Our Hands. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Alabama Doctors Praise ‘Unique’ NASA Panel on Aerospace Psychiatry

By Jessica Barnett

Medical professionals from across the U.S. gathered for a different kind of panel discussion during the annual Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.

The Alabama Psychiatric Physicians Association is a district branch of the American Psychiatric Association and the only association exclusively representing psychiatrists in the state of Alabama.

Ian Maddox, a systems engineer at NASA’s Marshall Space Flight Center, discussing future Artemis missions during a panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. Joining him onstage are Erin Hayward, an engineer on the Marshall Space Environmental Effects team, and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.
Ian Maddox, a systems engineer at NASA’s Marshall Space Flight Center, discussing future Artemis missions during a panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. Joining him onstage are Erin Hayward, an engineer on the Marshall Space Environmental Effects team, and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.
NASA/Christopher Blair

Psychiatrists were treated to a panel of NASA experts who shared insight from their work supporting human spaceflight research and habitation design for extended duration missions on the lunar and Martian surfaces. Panelists included Ian Maddox, a systems engineer supporting Artemis at NASA’s Marshall Space Flight Center; Erin Hayward, an engineer on the Marshall Space Environmental Effects team; and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.

During the panel, Hayward and Mason shared their experiences serving as crew members in multiple NASA analog missions, including HERA (Human Exploration Research Analog) and Desert RATS. Both involve space habitat design, isolation, and confinement studies, as well as identifying if certain stressors could affect astronauts during off-world missions. Such stressors include changes to sleep patterns, food intake, gravity, exercise routines, and more.

Maddox explained that it’s part of NASA’s ongoing work to prepare for longer missions to the Moon and beyond. “Humanity has always explored, and NASA is really the organization responsible for making sure that continues to happen safely and peacefully,” he said.

Maddox, Hayward, and Mason share a laugh with the audience during the Q&A portion of their panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.
Maddox, Hayward, and Mason share a laugh with the audience during the Q&A portion of their panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.
NASA/Jessica Barnett

Audience members were particularly interested in the analog missions, with several taking part in the Q&A portion of the panel. Many thanked the experts for presenting such a unique and fascinating topic, while some expressed interest in hosting similar discussions at future conferences across the nation.

Panelists answered questions about the crew selection process, explaining NASA’s careful screening procedures for identifying candidates to serve together for weeks or months in confined spaces and with very limited access to the outside world. Hayward and Mason also answered questions about their day-to-day lives inside the habitats, from smells and privacy concerns to handling downtime, and how it felt returning to their families and jobs after their campaigns.

“It took me a while to turn my phone notifications back on, just to ease back into the world,” Mason said. “I learned to be present and have more gratitude for the little things, like getting to feel the humidity, especially after 45 days without weather.”

The three NASA panelists encouraged audience members to submit a research proposal or even consider applying to participate in a future analog.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Dozens of Student Teams Worldwide to Compete in NASA Rover Challenge

NASA has selected 72 student teams to begin an engineering design challenge to build human-powered rovers that will compete next April at the U.S. Space & Rocket Center in Huntsville, near the agency’s Marshall Space Flight Center.

Celebrating its 30th anniversary in 2024, the Human Exploration Rover Challenge tasks high school, college, and university students to design, build, and test lightweight, human-powered rovers on an obstacle course simulating lunar and Martian terrain, all while completing mission-focused science tasks.

Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
NASA

Participating teams represent 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world. NASA’s handbook has complete proposal guidelines and task challenges.

“Throughout this authentic learning challenge, NASA encourages students to improve their understanding of collaboration, inquiry, and problem-solving strategies,” said Vemitra Alexander, rover challenge activity lead, Office of STEM Engagement at NASA Marshall. “Improving these critical real-world skills will benefit our students throughout their academic and professional careers.”

Throughout the nine-month challenge, students will complete design and safety reviews to mirror the process used by NASA engineers and scientists. The agency also incorporates vehicle weight and size requirements encouraging students to consider lightweight construction materials and stowage efficiency to be replicate similar payload restrictions of NASA launch operations.

Teams earn points throughout the year by successfully completing design reviews and fabricating a rover capable of meeting all criteria while completing course obstacles and mission tasks. The teams with the highest number of points accumulated throughout the project year will win their respective divisions. The challenge will conclude with an event April 19 and April 20, 2024, at the U.S. Rocket and Space Center.

This competition is one of nine Artemis Student Challenges and reflects the goals of NASA’s Artemis program, which includes landing the first woman and first person of color on the Moon. It is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. NASA uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.

› Back to Top

NASA Prepares Artemis II Moon Rocket Core Stage for Final Assembly Phase

By Megan Carter

NASA and its partners have fully secured the four RS-25 engines onto the core stage of the agency’s SLS (Space Launch System) rocket for the Artemis II flight test. The core stage, and its engines, is the backbone of the SLS mega rocket that will power the flight test, the first crewed mission to the Moon under Artemis.

Engineers have begun final integration testing at NASA’s Michoud Assembly Facility, in preparation for acceptance ahead of shipment of the stage to Kennedy Space Center in the coming months.

These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon.   Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure.   NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon. Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
Credits: NASA

The 212-foot-tall core stage includes two massive liquid propellant tanks and four RS-25 engines at its base. For Artemis II, the core stage and its engines act as the powerhouse of the rocket, providing more than two million pounds of thrust for the first eight minutes of flight to send the crew of four astronauts inside NASA’s Orion spacecraft on an approximately 10-day mission around the Moon.

NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, secured the engines to the maze of propulsion and avionics systems within the core stage Oct. 6. In the coming weeks, engineers will perform testing on the entire stage and its avionics and electrical systems, which act as the “brains” of the rocket to help control it during flight.

Once testing of the stage is complete and the hardware passes its acceptance review, the core stage will be readied for shipping to Kennedy via the agency’s Pegasus barge, based at Michoud.

As teams prepare the core stage for Artemis II, rocket hardware is also under construction on our factory floor for Artemis III, IV, and V that will help send the future Artemis astronauts to the lunar South Pole.

The engines were first soft mated one by one onto the stage beginning in early September. The last RS-25 engine was structurally installed onto the stage Sept. 20. Installing the four engines is a multi-step, collaborative process for NASA, Boeing, and Aerojet Rocketdyne.

Following the initial structural connections of the individual engines, securing and outfitting all four engines to the stage is the lengthiest part of the engine assembly process and includes securing the thrust vector control actuators, ancillary interfaces, and remaining bolts before multiple tests and checkouts.

All major hardware elements for the SLS rocket that will launch Artemis II are either complete or in progress. The major components for the rocket’s two solid rocket boosters are at Kennedy. The rocket’s two adapters, produced at NASA’s Marshall Space Flight Center, along with the rocket’s upper stage, currently at lead contractor United Launch Alliance’s facility in Florida near Kennedy, will be prepared for shipment in the spring. Marshall manages the SLS Program.

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

Carter, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series

NASA conducted the first hot fire of a new RS-25 test series Oct. 17, beginning the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond.

A full duration test of the RS-25 certification engine was conducted at NASA's Stennis Space Center on October 17, 2023.
NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all.
NASA / Danny Nowlin

Operators fired the RS-25 engine for more than nine minutes (550 seconds), longer than the 500 seconds engines must fire during an actual mission, on the Fred Haise Test Stand at NASA’s Stennis Space Center. Operators also fired the engine up to the 111% power level needed during an SLS launch. The hot fire marked the first in a series of 12 tests scheduled to stretch into 2024. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V.

The test series will collect data on the performance of several new key engine components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June. Aerojet Rocketdyne is using advanced manufacturing techniques, such as 3D printing, to reduce the cost and time needed to build the new engines. Four RS-25 engines help power SLS at launch, including on its Artemis missions to the Moon.

Through Artemis, NASA is returning humans, including the first woman and the first person of color, to the Moon to explore the lunar surface and prepare for flights to Mars. SLS is the only rocket capable of sending the agency’s Orion spacecraft, astronauts, and supplies to the Moon in a single mission.

› Back to Top

Psyche Launch Highlighted on ‘This Week at NASA’

NASA’s Psyche launched aboard a SpaceX Falcon Heavy from the agency’s Kennedy Space Center on Oct. 13. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

Psyche is on its way to a metal-rich asteroid of the same name. The mission could teach us more about how rocky planets like Earth formed.

Managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center, Psyche is the 14th planetary exploration mission in NASA’s Discovery program, which is also managed for the agency by Marshall. Read more about Marshall’s role in Psyche.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

Lucy Spacecraft Continues Approach to Asteroid Dinkinesh

Since NASA’s Lucy spacecraft first imaged the asteroid Dinkinesh on Sept. 3, Lucy has traveled over 33 million miles and is now 4.7 million miles away from the small asteroid. However, as Dinkinesh continues on its orbit around the Sun, Lucy still has another almost 16 million miles to travel to its meet-up with the asteroid on Nov. 1.

This data visualization overlays some of the images taken by the Lucy spacecraft’s L’LORRI from Sept. 3 to Oct. 3 on the Lucy trajectory (red) and the orbit of the asteroid Dinkinesh (gold). These images were taken as part of the optical navigation program in advance of the encounter on Nov. 1. The stars indicate the locations at closest approach on Nov. 1. (NASA/SwRI/APL)

Over the last month, the spacecraft team has seen the target asteroid generally brightening as Lucy approaches it and has also seen a subtle brightness variation consistent with the previously observed 52.7-hour rotation period. Since Lucy first observed the asteroid on Sept. 3, the team has used images collected by the spacecraft’s high-resolution camera, L’LORRI, to refine their knowledge of the relative positions of the spacecraft and asteroid, optically navigating Lucy towards the encounter. Using this information, on Sept. 29 the spacecraft carried out a small trajectory correction maneuver, changing the spacecraft’s speed by just 6 cm/s (around 0.1 mph). This nudge is predicted to send the spacecraft on a path that will pass within 265 miles of the asteroid. In late October the team will have another opportunity to adjust the trajectory if necessary.             

On Oct. 6, the spacecraft passed behind the Sun as viewed from Earth, beginning a planned communications blackout. The spacecraft has continued to image the asteroid and will return these images to Earth once communications resume after the end of the solar conjunction period in mid-October.

Lucy’s principal investigator, Hal Levison, is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio, Texas. NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters.

› Back to Top

Webb Detects Tiny Quartz Crystals in the Clouds of a Hot Gas Giant

Researchers using NASA’s James Webb Space Telescope have detected evidence for quartz nanocrystals in the high-altitude clouds of WASP-17 b, a hot Jupiter exoplanet 1,300 light-years from Earth. The detection, which was uniquely possible with MIRI (Webb’s Mid-Infrared Instrument), marks the first time that silica (SiO2) particles have been spotted in an exoplanet atmosphere.

“We were thrilled!” said David Grant, a researcher at the University of Bristol in the UK and first author on a paper published in the Astrophysical Journal Letters. “We knew from Hubble observations that there must be aerosols – tiny particles making up clouds or haze – in WASP-17 b’s atmosphere, but we didn’t expect them to be made of quartz.”

Illustration showing a portion of the disk of a cloudy planet set against the black background of space. About one-eighth of the planet is visible. It fills the lower right half of the frame, with the limb (the edge, or horizon) curving from the bottom left corner to the upper right corner. The planet is partially lit by a star that is off to the upper left, out of view. The planet is brightest along the limb (on the dayside), and grows dimmer toward the lower right corner (the nightside), becoming almost completely dark about halfway in. Wispy, light-tan-colored clouds are visible in the lit portion and there is a hazy blueish glow along the horizon. Several stars are sc attered in the background.
This artist concept shows what the exoplanet WASP-17 b could look like.
NASA, ESA, CSA, and R. Crawford (STScI)Science: Nikole Lewis (Cornell University), David Grant (University of Bristol), Hannah Wakeford (University of Bristol) Crawford (STScI)

Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone – which is pure SiO2.

The result from this team, which also includes researchers from NASA’s Ames Research Center and NASA’s Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. “We fully expected to see magnesium silicates,” said co-author Hannah Wakeford, also from the University of Bristol. “But what we’re seeing instead are likely the building blocks of those, the tiny ‘seed’ particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs.”

With a volume more than seven times that of Jupiter and a mass less than one-half Jupiter, WASP-17 b is one of the largest and puffiest known exoplanets. This, along with its short orbital period of just 3.7 Earth-days, makes the planet ideal for transmission spectroscopy : a technique that involves measuring the filtering and scattering effects of a planet’s atmosphere on starlight.

Webb observed the WASP-17 system for nearly 10 hours, collecting more than 1,275 brightness measurements of 5- to 12-micron mid-infrared light as the planet crossed its star. By subtracting the brightness of individual wavelengths of light that reached the telescope when the planet was in front of the star from those of the star on its own, the team was able to calculate the amount of each wavelength blocked by the planet’s atmosphere.

What emerged was an unexpected “bump” at 8.6 microns, a feature that would not be expected if the clouds were made of magnesium silicates or other possible high temperature aerosols like aluminum oxide, but which makes perfect sense if they are made of quartz.

While these crystals are probably similar in shape to the pointy hexagonal prisms found in geodes and gem shops on Earth, each one is only about 10 nanometers across – one-millionth of one centimeter.

“Hubble data actually played a key role in constraining the size of these particles,” explained co-author Nikole Lewis of Cornell University, who leads the Webb GTO (Guaranteed Time Observation) program designed to help build a three-dimensional view of a hot Jupiter atmosphere. “We know there is silica from Webb’s MIRI data alone, but we needed the visible and near-infrared observations from Hubble for context, to figure out how large the crystals are.”

Unlike mineral particles found in clouds on Earth, the quartz crystals detected in the clouds of WASP-17 b are not swept up from a rocky surface. Instead, they originate in the atmosphere itself. “WASP-17 b is extremely hot – around 1,500 degrees Celsius (2,700°F) – and the pressure where they form high in the atmosphere is only about one-thousandth of what we experience on Earth’s surface,” explained Grant. “In these conditions, solid crystals can form directly from gas, without going through a liquid phase first.”

Understanding what the clouds are made of is crucial for understanding the planet as a whole. Hot Jupiters like WASP-17 b are made primarily of hydrogen and helium, with small amounts of other gases like water vapor (H2O) and carbon dioxide (CO2). “If we only consider the oxygen that is in these gases, and neglect to include all of the oxygen locked up in minerals like quartz (SiO2), we will significantly underestimate the total abundance,” explained Wakeford. “These beautiful silica crystals tell us about the inventory of different materials and how they all come together to shape the environment of this planet.”

Exactly how much quartz there is, and how pervasive the clouds are, is hard to determine. “The clouds are likely present along the day/night transition (the terminator), which is the region that our observations probe,” said Grant. Given that the planet is tidally locked with a very hot day side and cooler night side, it is likely that the clouds circulate around the planet, but vaporize when they reach the hotter day side. “The winds could be moving these tiny glassy particles around at thousands of miles per hour.”

WASP-17 b is one of three planets targeted by the JWST-Telescope Scientist Team’s DREAMS (Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy) investigations, which are designed to gather a comprehensive set of observations of one representative from each key class of exoplanets: a hot Jupiter, a warm Neptune, and a temperate rocky planet. The MIRI observations of hot Jupiter WASP-17 b were made as part of GTO program 1353.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      NASA/JPL-Caltech This Oct. 4, 2017, illustration shows a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian’s Star or Tabby’s Star. The star has experienced unusual dips in brightness over a matter of days, as well as much subtler but longer-term dimming trends. Scientists proposed several explanations for this unexpected behavior, ranging from Tabby’s Star swallowing a planet to alien “megastructures” harvesting the star’s energy. However, a study using NASA’s Spitzer and Swift missions as well as the Belgian AstroLAB IRIS observatory suggests that the cause of the dimming over long periods is likely an uneven dust cloud moving around the star.
      Learn more about this enigmatic star, named after Tabetha Boyajian, the Yale University postdoc who discovered it with the help of citizen scientists.
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before. 
      The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below. 
      “Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study. 
      Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
      “Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
      Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
      This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun. 
      The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
      Irina Kitiashvili
      NASA Scientist
      “The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
      These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data. 
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit: ​
      https://www.nas.nasa.gov/sc24
      For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 21, 2024 Related Terms
      General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
      2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
      Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
      Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
      Article 24 hours ago Keep Exploring Discover More Topics From NASA
      Parker Solar Probe
      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
      Solar Storms and Flares
      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
      Solar System
      Track the Solar Cycle with Sunspots
      Participate in sunspot-counting activities using NASA telescopes or your own.
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
      An artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. Credits:
      NASA-JPL, Caltech In 1936, astronomers saw a puzzling event in the constellation Orion: the young star FU Orionis (FU Ori) became a hundred times brighter in a matter of months. At its peak, FU Ori was intrinsically 100 times brighter than our Sun. Unlike an exploding star though, it has declined in luminosity only languidly since then.
      Now, a team of astronomers has wielded NASA’s Hubble Space Telescope‘s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They find that the inner disk touching the star is extraordinarily hot — which challenges conventional wisdom.
      The observations were made with the telescope’s COS (Cosmic Origins Spectrograph) and STIS (Space Telescope Imaging Spectrograph) instruments. The data includes the first far-ultraviolet and new near-ultraviolet spectra of FU Ori.
      “We were hoping to validate the hottest part of the accretion disk model, to determine its maximum temperature, by measuring closer to the inner edge of the accretion disk than ever before,” said Lynne Hillenbrand of Caltech in Pasadena, California, and a co-author of the paper. “I think there was some hope that we would see something extra, like the interface between the star and its disk, but we were certainly not expecting it. The fact we saw so much extra — it was much brighter in the ultraviolet than we predicted — that was the big surprise.”
      A Better Understanding of Stellar Accretion
      Originally deemed to be a unique case among stars, FU Ori exemplifies a class of young, eruptive stars that undergo dramatic changes in brightness. These objects are a subset of classical T Tauri stars, which are newly forming stars that are building up by accreting material from their disk and the surrounding nebula. In classical T Tauri stars, the disk does not touch the star directly because it is restricted by the outward pressure of the star’s magnetic field.
      The accretion disks around FU Ori objects, however, are susceptible to instabilities due to their enormous mass relative to the central star, interactions with a binary companion, or infalling material. Such instability means the mass accretion rate can change dramatically. The increased pace disrupts the delicate balance between the stellar magnetic field and the inner edge of the disk, leading to material moving closer in and eventually touching the star’s surface.
      This is an artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope’s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They found that the inner disk, touching the star, is much hotter than expected—16,000 kelvins—nearly three times our Sun’s surface temperature. That sizzling temperature is nearly twice as hot as previously believed. NASA-JPL, Caltech
      Download this image

      The enhanced infall rate and proximity of the accretion disk to the star make FU Ori objects much brighter than a typical T Tauri star. In fact, during an outburst, the star itself is outshined by the disk. Furthermore, the disk material is orbiting rapidly as it approaches the star, much faster than the rotation rate of the stellar surface. This means that there should be a region where the disk impacts the star and the material slows down and heats up significantly. 
      “The Hubble data indicates a much hotter impact region than models have previously predicted,” said Adolfo Carvalho of Caltech and lead author of the study. “In FU Ori, the temperature is 16,000 kelvins [nearly three times our Sun’s surface temperature]. That sizzling temperature is almost twice the amount prior models have calculated. It challenges and encourages us to think of how such a jump in temperature can be explained.”
      To address the significant difference in temperature between past models and the recent Hubble observations, the team offers a revised interpretation of the geometry within FU Ori’s inner region: The accretion disk’s material approaches the star and once it reaches the stellar surface, a hot shock is produced, which emits a lot of ultraviolet light.
      Planet Survival Around FU Ori
      Understanding the mechanisms of FU Ori’s rapid accretion process relates more broadly to ideas of planet formation and survival.
      “Our revised model based on the Hubble data is not strictly bad news for planet evolution, it’s sort of a mixed bag,” explained Carvalho. “If the planet is far out in the disk as it’s forming, outbursts from an FU Ori object should influence what kind of chemicals the planet will ultimately inherit. But if a forming planet is very close to the star, then it’s a slightly different story. Within a couple outbursts, any planets that are forming very close to the star can rapidly move inward and eventually merge with it. You could lose, or at least completely fry, rocky planets forming close to such a star.”
      Additional work with the Hubble UV observations is in progress. The team is carefully analyzing the various spectral emission lines from multiple elements present in the COS spectrum. This should provide further clues on FU Ori’s environment, such as the kinematics of inflowing and outflowing gas within the inner region.
      “A lot of these young stars are spectroscopically very rich at far ultraviolet wavelengths,” reflected Hillenbrand. “A combination of Hubble, its size and wavelength coverage, as well as FU Ori’s fortunate circumstances, let us see further down into the engine of this fascinating star-type than ever before.”
      These findings have been published in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 17176.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Abigail Major, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
    • By NASA
      Astrogram banner TIME Recognizes the Advanced Composite Solar Sail System
      In October, the Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024”! TIME Magazine also recognized two other NASA missions this year: Europa Clipper, and the Deep Space Optical Communications experiment.   
      The Advanced Composite Solar Sail System is a demonstration of technologies that enable spacecraft to “sail on sunlight,” using solar radiation for propulsion. Results from this mission could provide an alternative to chemical and electric propulsion systems and guide the design of future larger-scale spacecraft for space weather early warning satellites, near-Earth asteroid reconnaissance missions, or communications relays for crewed exploration missions at the Moon and Mars.  
      The Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024.”NASA This twelve-unit (12U) CubeSat features a reflective sail held taut by composite booms made from flexible polymer and carbon fiber materials that are stiffer and lighter than previous designs. The square-shaped solar sail measures approximately 80 square meters, but the new boom technology could support future missions for solar sails up to 500 square meters.   
      The mission launched on April 23 via a Rocket Lab Electron rocket and met its primary objective in August by deploying the boom and sail system in space. Next, the team will attempt to demonstrate maneuverability in orbit using the sail.   
      Congratulations to the Advanced Composite Solar Sail System team and the Small Spacecraft Technology program office, based at Ames, for this well-earned recognition. Their contributions continue to push the boundaries of what we can achieve at NASA, and this acknowledgment highlights the capabilities and vision of our center.   

      Representative Anna Eshoo Recognized for 32 Years of Distinguished Public Service
      On Oct. 29, Ames hosted a recognition event for Representative Anna Eshoo to honor her 32 years of public service and to thank her for her enduring support for NASA and our center. Representative Eshoo announced her retirement from Congress in 2023.
      On Oct. 29, Ames Center Director Dr. Eugene Tu presented the Pioneer Plaque to Congresswoman Anna Eshoo in the ballroom of Building 3 at NASA Research Park.NASA photo by Brandon Torres Representative Zoe Lofgren, public officials from across the Bay Area, and colleagues from around the center were in attendance to celebrate Representative Eshoo’s decades of tireless support. During the formal program, Ames Center Director Dr. Eugene Tu presented her with a replica of a Pioneer Plaque (photo above) as a token of appreciation for her many years as a champion for NASA Ames – from Hangar One, to the USGS Building, and the Moffett Field Museum.
      Congresswoman Anna Eshoo gives remarks to the audience during the unveiling of her commemorative plaque at the Moffett Field Museum, in NASA Research Park, on Oct. 29.NASA photo by Brandon Torres Safety Day Organizational Silence Town Hall Held

      On Oct. 1, a Safety Day Organizational Silence Town Hall was held that focused on employee feedback and insights from prior Safety Culture, Federal Employee Viewpoint, and DEIA Organizational Climate surveys.
      Fostering a psychologically safe culture of open communication at NASA and Ames is imperative for the safety of our team and for the collective success of our missions. This is a topic of particular interest and concern to Ames center leadership. 
      Acting Director of the NASA Safety Center Bob Conway speaks during the Oct. 1 Safety Day Organization Silence Town Hall.NASA photo by Don RIchey Acting Director of the NASA Safety Center, Bob Conway, presented in person at Ames to conduct the hybrid town hall event in the N201 auditorium on Organizational Silence. In addition to valuable insights and tactics, there was the opportunity for employees to ask questions via a Conference I/O channel and in person during the event. 
      Following the main presentation, Associate Center Director Amir Deylami, at the podium, leads a question-and-answer session with the town hall audience and online attendees of the Safety Day: Organizational Silence town hall, with (seated left to right) Acting Director of the NASA Safety Center Bob Conway, Deputy Center Director David Korsmeyer, Director of Safety and Mission Assurance Directorate Drew Demo, and Director of Center Operations Directorate Aga Goodsell.NASA photo by Don RIchey Deputy Administrator Pam Melroy Visits Ames, Attends Roundtable Discussions

      NASA Deputy Administrator Pam Melroy speaks with NASA 2040 participants in the lobby of N232, during her visit to Ames on Sept. 16.NASA photo by Brandon Torres On Sept. 16, Ames welcomed NASA Deputy Administrator Pam Melroy to the center. Having toured the facilities at Ames on past visits, Melroy visited the center to engage in several roundtable discussions with employees focused on procurement, NASA 2040, and leadership. She also greeted a delegation from the American Chamber of Commerce in Australia, with Australia being among the original eight international partners to sign on to the Artemis Accords in 2020. Across all of her conversations, Melroy voiced her appreciation for the Ames workforce for their steadfast dedication. She also consistently expressed her admiration for the diverse array of foundational work being done at Ames to advance NASA’s mission. 

      President of Latvia, Edgars Rinkēvičs Visits Ames
      The President of Latvia Edgars Rinkēvičs visited Ames on Sept. 18 to learn about our aeronautics research and some of the center’s technical capabilities. Accompanied by a delegation of Latvian business representatives, the president visited the Airspace Operations Lab and FutureFlight Central.  
      President of Latvia Edgars Rinkēvičs, right, chats with Ames Center Director Dr. Eugene Tu, second from right, while in FutureFlight Central.NASA photo by Brandon Torres During the visit, he was briefed on the center’s air traffic management simulation capabilities aimed at solving the challenges – present and emerging – of the nation’s air traffic management system. Center experts discussed innovative work in airspace management, including commercial and public safety drone operations that extend from local incidents to large-scale disaster response. Through these international visits, we are showcasing NASA to the world.  

      Discussions, Lightning Pitches Presented at Ames’ Aeronautics Innovation Forum
      The 2024 Aeronautics Innovation Forum was held Sept. 17 – 19, supporting aeronautics research and innovation. A panel discussion, “Aeronautics & Space Economy” was held the first day with Dr. Parimal Kopardekar, Director of the NASA Aeronautics Research Institute (NARI) acting as the moderator. Panelists were Dr. Alex MacDonald, Chief Economist, NASA; Peter Shannon, Radius Capital, AAM Investor; Julia Black, Director of Range Operations, Stoke Space; and Dr. Yewon Kim, Professor, Stanford Graduate School of Business. Facility tours were also given during the forum. Lightning pitches were presented, along with an All Hands meeting, an aeronautics taco fiesta picnic and games at the Ames Park, and an ice cream social and Aeronautics Innovation Center (AIC) discussion.
      Director of NASA’s Aeronautics Research Institute (NARI) Parimal Kopardekar (PK) moderates a panel session “Aeronautics & Space Economy” during the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Nelson Iwai gives attendees of the 2024 Ames Aeronautics INNOVATION Forum a tour of the Aerospace Cognitive Engineering Lab Rapid Automation Test Environment (ACEL-RATE) in N262.NASA photo by Don Richey Don Durston gives his lightening pitch on day three of the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Following the 2024 Ames Aeronautics Innovation Forum, attendees met in Mega-Bytes for an ice cream social and to discuss the Aeronautics Innovation Center.NASA photo by Don Richey
      NASA and Partners Scaling to New Heights in Air Traffic Management
      by Hillary Smith
      NASA, in partnership with AeroVironment and Aerostar, recently demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes.
      This work seeks to open the door for increased internet coverage, improved disaster response, expanded scientific missions, and even supersonic flight. The concept is referred to as an Upper-Class E traffic management, or ETM.  There is currently no traffic management system or set of regulations in place for aircraft operating 60,000 feet and above. There hasn’t been a need for a robust traffic management system in this airspace until recently. That’s because commercial aircraft couldn’t function at such high altitudes due to engine constraints.  
      NASA and partners from Aerostar and AeroVironment discuss a simulation of a high-altitude air traffic management system in the Airspace Operations Lab at NASA Ames.NASA photo by Don Richey However, recent advancements in aircraft design, power, and propulsion systems are making it possible for high- altitude, long-endurance vehicles — such as balloons, airships, and solar aircraft — to coast miles above our heads, providing radio relay for disaster response, collecting atmospheric data, and more.  
      But before these aircraft can regularly take to the skies, operators must find a way to manage their operations without overburdening air traffic infrastructure and personnel.  
      “We are working to safely expand high-altitude missions far beyond what is currently possible,” said Kenneth Freeman, a subproject manager for this effort at NASA’s Ames Research Center in California’s Silicon Valley. “With routine, remotely piloted high-altitude operations, we have the opportunity to improve our understanding of the planet through more detailed tracking of climate change, provide internet coverage in underserved areas, advance supersonic flight research, and more.” 
      Current high-altitude traffic management is processed manually and on a case-by-case basis. Operators must contact air traffic control to gain access to a portion of the Class E airspace. During these operations, no other aircraft can enter this high-altitude airspace. This method will not accommodate the growing demand for high-altitude missions, according to NASA researchers.  
      To address this challenge, NASA and its partners have developed an ETM traffic management system that allows aircraft to autonomously share location and flight plans, enabling aircraft to stay safely separated. 
      During the recent traffic management simulation in the Airspace Operations Laboratory at Ames, data from multiple air vehicles was displayed across dozens of traffic control monitors and shared with partner computers off site.
      This included aircraft location, health, flight plans and more. Researchers studied interactions between a slow fixed-wing vehicle from AeroVironment and a high-altitude balloon from Aerostar operating at stratospheric heights.
      Each aircraft, connected to the ETM traffic management system for high altitude, shared location and flight plans with surrounding aircraft.  
      This digital information sharing allowed Aerostar and AeroVironment high-altitude vehicle operators to coordinate and deconflict with each other in the same simulated airspace, without having to gain approval from air traffic control.
      Because of this, aircraft operators were able to achieve their objectives, including wireless communication relay. 
      This simulation represents the first time a traffic management system was able to safely manage a diverse set of high-altitude aircraft operations in the same simulated airspace.
      Next, NASA researchers will work with partners to further validate this system through a variety of real flight tests with high-altitude aircraft in a shared airspace.   
      The Upper-Class E traffic management concept was developed in coordination with the Federal Aviation Administration and high-altitude platform industry partners, under NASA’s National Airspace System Exploratory Concepts and Technologies subproject led out of Ames.  

      Starship Super Heavy Breezes Through Wind Tunnel Testing at NASA Ames
      by Lee Mohon
      NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA Ames. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA Ames’ transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the Starship HLS, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

      2024 NASA SmallSat In-Person LEARN Forum Held

      Audience members participate in a discussion during the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum held Sept. 24 in the ballroom of Building 3 at NASA Research Park.NASA NASA Conjunction Assessment Program Officer Lauri Newman speaks at the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum in the ballroom of Building 3 at NASA Research Park.NASA Attendees of the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum read about other projects during the poster session in the ballroom of Building 3 at NASA Research Park.NASA NASA Astronauts, Leadership Visit Children’s Hospital, Cancer Moonshot Event
      NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4.
      Roundtable discussions centered conversation around the five hazards of human spaceflight: space radiation, isolation and confinement, distance from Earth, gravity, and closed or hostile environments. Many of these hazards have direct correlations to a cancer patient’s lived experience, like the isolation of a hospital room and long-term effects of radiation.
      NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research efforts.NASA photo by Brandon Torres During the visit with patients at the UCSF Benioff Children’s Hospital San Francisco, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
      Patients also received a video message from NASA astronauts Suni Williams and Butch Wilmore from the International Space Station, and met with the Director of NASA’s Johnson Space Center in Houston Vanessa Wyche, Ames Center Director Dr. Eugene Tu, and other agency leaders.
      Leadership from NASA and the University of California, San Francisco gathered for an informal luncheon before a collaborative roundtable discussion of research opportunities. From left to right, Alan Ashworth, president of the UCSF Helen Diller Family Comprehensive Cancer Center, Dr. Eugene Tu, director NASA Ames, Dr. David Korsmeyer, deputy director NASA Ames, Sam Hawgood, chancellor of UCSF, and Vanessa Wyche, director NASA’s Johnson Space Center in Houston.NASA photo by Brandon Torres By connecting the dots between human space research and cancer research, NASA and the University of California hope to open doors to innovative new research opportunities. NASA is working with researchers, institutions, and agencies across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative.
      Learn more about the Cancer Moonshot at: https://www.whitehouse.gov/cancermoonshot

      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      by Gianine Figliozzi
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown below is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to  increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.

      2024 Silver Snoopy Awards Presented by Astronaut Nicole Mann
      On Oct. 24, Astronaut Nicole Mann presented the Silver Snoopy Awards in the Syvertson Auditorium at the center. The Silver Snoopy best symbolizes the intent and spirit of Space Flight Awareness.  An astronaut always presents the Silver Snoopy because it is the astronauts’ own award for outstanding performance, contributing to flight safety and mission success.  Fewer than one percent of the aerospace program workforce receive it annually, making it a special honor to receive this award.
      Silver Snoopy Award recipient Tomomi Oishi (holding award) and Astronaut Nicole Mann with colleagues in the Syvertson Auditorium during the award ceremony on Oct. 24.NASA photo by Brandon Torres Silver Snoopy Award presented to Ali Guarneros Luna, center, by Center Director Dr. Eugene Tu, left, and Astronaut Nicole Mann in the Syvertson Auditorium on Oct. 24.NASA photo by Brandon Torres Jordan Kam Receives a Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award
      by Maria C. Lopez
      Jordan Kam, a rising star at NASA Ames and a dedicated member of the Ames Hispanic Advisory Committee for Employees (HACE), recently received the prestigious Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award at the SHPE 50th National Convention held in Anaheim, California.
      Left to right, at the SHPE 50th National Convention award ceremony: Oscar Dubón, professor of Materials Science & Engineering (MSE) and associate dean of Students in the College of Engineering at UC Berkeley; Jordan Kam, recipient of the SHPE Undergraduate Research Competition Award; and Marvin Lopez, director of Student Programs, College of Engineering at UC Berkeley. Currently pursuing an engineering degree at UC Berkeley, Jordan also is interning at NASA Ames through the Volunteer Internship Program, supporting the Intelligent Systems Division. Jordan’s award-winning research, entitled “Development of The Wireless Prototype ‘STAMPS’ for Data Acquisition, Analysis, and Visualization,” focuses on the System for Telemetry Amalgamation of Multimodal Prognostics. This innovative project plays a crucial role in diagnostics and prognostics for the Earth Independent Operations (EIO) Domain, which is essential for NASA’s Mars Campaign efforts.
      The SHPE National Convention is the largest annual gathering of Hispanic STEM students and professionals, with more than 20,000 members dedicated to promoting Hispanic leadership in STEM fields. Jordan’s achievement is not only a testament to hard work and dedication but also an inspiration to all of us.

      Celebrating Hispanic Heritage Month: Ignacio Lopez-Francos Featured in Newsweek En Español
      by Maria C. Lopez
      In honor of Hispanic Heritage Month, Newsweek En Español has released a special October/November edition that highlights Hispanics around the globe who are making significant contributions to the field of artificial intelligence. NASA Ames’ very own Ignacio Lopez-Francos has been featured in this prestigious publication!
      Ignacio Lopez-Francos, a principal research engineer with the Intelligent Systems Division at NASA Ames has been featured in this Newsweek En Español. Ignacio is a principal research engineer with the Intelligent Systems Division at NASA Ames, working through the KBR Wyle Services, LLC contract. Ignacio’s groundbreaking research focuses on applied AI for robot autonomy, encompassing core areas such as vision-based navigation, 3D scene reconstruction, geospatial mapping, edge computing, and foundation models. In addition to Ignacio’s impressive technical work, Ignacio is an active member of the Ames Hispanic Advisory Committee for Employees (HACE), further demonstrating his commitment to community and representation.
      Congratulations, Ignacio! Your pioneering efforts in AI are not only advancing technology but also making a global impact. It is inspiring to see you representing the NASA workforce and serving as a role model for future generations. We celebrate your passion and dedication!

      Congratulations to Major Crystal A. Armendariz on her Promotion to Army Major!
      by Maria C. Lopez
      On Sept. 16, the Ames Veterans Committee (AVC) proudly celebrated the promotion of Crystal A. Armendariz to the rank of United States Army Major during a ceremony at NASA Ames. This momentous occasion was organized by AVC and the Asian American Pacific Islander Advisory Group (AAPIAG), bringing together colleagues and friends to honor Major Armendariz’s exceptional service and dedication.
      Major Crystal Armendariz 397th Engineer Battalion Executive Officer (center) wears her new Major rank, standing alongside her daughter Maya Karp and guest David Chavez during the September 16 ceremony. Major Armendariz is a distinguished military graduate of California State University-Sacramento, where she earned a degree in Health Science with a focus on Community Health Education, as well as her commission in the United States Army. After completing the Army Military Intelligence Basic Officer Leader Course, she began her career with the 25th Combat Aviation Brigade at Wheeler Army Airfield in Hawaii, quickly deploying to Afghanistan as the Brigade Assistant Intelligence Officer in support of Operation Enduring Freedom. Her career has since seen her take on key leadership roles, including Battalion Intelligence Officer in Charge and Company Executive Officer, where she demonstrated remarkable skill and commitment to her missions.
      Following her completion of the Army Military Intelligence Captain’s Career Course, Major Armendariz served at Fort Carson, Colorado, and took part in Operation Atlantic Resolve in Germany. Her leadership extended to managing complex security programs and providing critical intelligence support in joint operational environments. In 2021, she served as the Battalion Security Officer for the 25th Infantry Division at Schofield Barracks, ensuring safety compliance and advising command on security matters across multiple operational theaters.
      In 2023, Major Armendariz transitioned to the 397th Reserve Engineer Battalion in Marina, California, as the Battalion S2. Shortly thereafter, she was selected as the Battalion Executive Officer and promoted to Major, overseeing staff operations and ensuring effective communication and planning. Her impressive accolades include the Knowlton Award, Joint Service Commendation Medal, and several other commendations that highlight her unwavering commitment to excellence in military service. Congratulations Major Crystal Armendariz on a well-deserved promotion and remarkable achievements!

      Faces of NASA – Ames’ Dr. Donald Mendoza, Chief Engineer
      “From my earliest childhood, flight had always captivated me. I lived out in the boonies and the farmlands, so I didn’t have neighbors to go and play with. If I wasn’t working, I was left to my own devices, and often, I would just be captivated by the wildlife and in particular, the birds of prey that I would see.
      Dr. Donald Menodoza, Chief Engineer, NASA Engineering and Safety Center at Ames.NASA photo by Dominic Hart “To me, they represented a freedom of some kind or another. These birds and the view they have — they can take in so much. So, from that point on, I knew I wanted to be involved in flight and aviation.
      “I [enjoyed] all things flight, all things spaceflight. I couldn’t get enough of it. I became an avid reader, whereas before, I wasn’t much of a reader. I couldn’t get enough material to read about my heroes from flight and space. They became my role models and the path that they took involved, at some point or another, a pretty rigorous education and dedication to doing well academically, physically, or athletically. So, I threw myself into that entire sort of mindset.
      “When I was working for the Air Force, I was able to fly and work on aircraft that I would dream about, looking at in the magazines Aviation Week and Space Technology. Here they are, right in front of me.
      “… So, my career has been as close as possible to that of a flight test engineer. And then, right on the heels of being captivated by atmospheric flight, working in human spaceflight has put me over the Moon.”
      —Dr. Donald Mendoza, Chief Engineer, NASA Engineering & Safety Center, NASA’s Ames Research Center
      Check out some of our other Faces of NASA.

      Cybersecurity Specialist Jonathan Kaldani Inspires Students at CSU East Bay
      On Oct. 29, Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team within the Cybersecurity and Privacy Division (CSPD) at NASA Ames, spoke to students in Professor Ahmed Banafa’s Computer Network class at CSU East Bay in Hayward, California.
      Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team at NASA Ames, giving his “Fly Me to the Moon” presentation to a Computer Network class at CSU East Bay in Hayward, California. The insightful session, “Fly Me to the Moon” delved into NASA’s mission and it’s future, and cybersecurity. It provided students with valuable career insights, including information about jobs and internships at NASA. The engagement was exceptional with students actively participating, and showcasing a high level of interest through numerous questions that extended beyond the scheduled class time.
      For all NASA Ames employees, if you are interested in sharing the NASA mission with others in your community, you are encouraged to take time to participate in NASA Engages speaking events!

      We Are All Made of Cells: Space and the Immune System
      by Rachel Hoover
      Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms. 
      But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
      Bone cells NASA/Eduardo Almeida and Cassie Juran “Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
      O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
      “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
      jA preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation.
      Image credit: courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
      “It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
      During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
      “I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
      When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity. 
      O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.

      Wildly Popular 21st Annual Chili Cook-Off and Car Show Held
      The Ames Exchange sponsored its 21st annual Chili Cook-Off on Oct. 30 behind Building 3. The theme for this year’s event was “Halloween Night,” which led to some really creative costumes. Attendees, both from Ames and the NASA Research Park, sampled chili and voted on their favorites. See below for photos of some of the spooky entries. A car and motorcycle show was also held in conjunction with the chili cook-off.
      The 21st Annual Chili Cook-off held Oct. 30 with Hanger One in the background.NASA photos by Don Richey The NASA Ames Fire Department won the Judge’s Choice award for best chili. The classic car collection at the recent Chili Cook-off. One of the collector’s cars at the Chili Cook-off. Classic bike collection at the Chili Cook-off. Employees Participate in the October Fun Run/Walk & Roll
      Runners begin the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. The course covers a 2-mile stretch starting on Durand Road, runs up DeFrance Road to North Perimeter Road and back. The Ames Fitness Center is committed to fostering an inclusive community and encourages everyone, regardless of fitness level, experience, or capability, to participate in these events. Invite your colleagues and come join the fun at future Fun Run/Walk & Roll events! Contact Marco or Orion at the Fitness Center 650-604-5804 or visit https://q.arc.nasa.gov/content/fitness-center for more information about these events and other Fitness Center classes and programs.
      Runners begin the October 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. NASA photo by Don Richey Runners and organizers of the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. Eric Yee front row left, David King, Nicholas Wogan, Sarah Nickerson, Jose Ignacio de Alvear Cardenas, Lara Lash, Bob Windhorst, Jon Hill, and Marco Santoyo front row right. Orion Spellman back row left, Marton Mester, Alejandro Serrano Borlaff, Evan Crowe, Jackson Donaldson, Jonathan Kaldani, Clayton Elder, and Collin Payne back row right.NASA photo by Don RIchey In Memoriam …

      Laura Lewis, Science Directorate Project Manager, Dies
      Laura Lewis passed away on Sept. 24 after a three-year fight against cancer.  Laura spent her entire 34-year career at NASA. She was a member of the Science Directorate at Ames. Laura launched her career at Kennedy Space Center. She then moved to Headquarters to work in the Space Life Sciences Office. She joined the Ames community in 1995.
      Laura Lewis Laura is survived by her husband and fellow Ames colleague, Bruce Yost, three children, and their three German Shepards.
      A passionate animal lover, Laura found ways throughout her life to care for and advocate for animals. In lieu of flowers, the family suggests donations be sent to animal shelters or animal rescue organizations such as the San Jose Humane Society or Sunshine Canyon Dog Rescue.
      Laura was a valued member of the NASA community. We extend our condolences to her family, friends, and colleagues.

      Former Technology Partnerships Manager Robin Orans Passes Away

      Robin Orans Robin Orans passed away on Sept. 27.  She was the technology partnership manager at Ames for 27 years. Prior to that role, she served as the software release authority for the center. She retired from NASA in 2015.
      Throughout Robin’s career at Ames she received numerous awards including NASA Ames Total Award for pivotal efforts in organizing the Technical SUPPORT Paper Contest for Woman and serving as the Technical Committee Paper Contest Committee in 1992; NASA Ames 2001 Technical Support Honor Award; NASA Ames 2015 Administrative Professional Honor Award; and NASA Ames 2016 Exceptional Service Medal.
      We value the many years Robin dedicated to the NASA mission and send our condolences to her family, friends, and colleagues.

      Joseph (Jay) Skiles, Senior Research Scientist, Dies
      Dr. Joseph (Jay) W. Skiles III passed away at home on October 22. He had a long and varied career studying, teaching, and lecturing about environmental sciences. He received a B.S. in biology from the University of Redlands, an M.S. in Botany from the University of Idaho, and a Ph.D. in Ecology and Evolutionary Biology from the University of California, Irvine.
      Joseph (Jay) Skiles Jay worked with a number of organizations, including SETI, Johnson Controls, and NASA Ames. While at Ames, he sponsored and tutored select groups of students, lectured internationally, evaluated various projects from schools and agencies, and initiated and developed scientific investigative projects on his own. He has worked modeling the effects of elevated atmospheric CO2 on ecosystems and modeling perturbations of Arctic ecosystems. He studied terrestrial plant responses to increased ultraviolet radiation in the polar regions of Earth and the effects of low intensity microwave fields on vascular plants. He used supercomputers to do ecosystem modeling.
      While not at work, Jay volunteered with the Mountain View Police Department and played golf. He was active with the local Masonic lodge and was a pretty fair clarinetist. Jay was born in Bakersfield, California, to Rev. Joseph W. Skiles II and Genevieve Eola Moody Skiles. He is survived by his brother Stephen, his sister Elizabeth, and eight nieces and nephews.
      Private service arrangements are pending.

      View the full article
  • Check out these Videos

×
×
  • Create New...