Jump to content

Lynn Bassford Prioritizes Learning as a Hubble Mission Manager


Recommended Posts

  • Publishers
Posted

6 min read

Lynn Bassford Prioritizes Learning as a Hubble Mission Manager

Name: Lynn Bassford

Title: Hubble Space Telescope Mission Flight Operations Manager

Formal Job Classification: Multifunctional Engineering and Science Manager

Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441

Lynn Bassford, a woman with long brown hair, smiles at the camera in an official headshot. She wears a purple collared shirt and poses in front of a photo of Saturn and Neptune.
Lynn Bassford’s long career enables her to keep learning. “It’s just a fact of my life to learn something new every day until the day I die,” she says. “I’m not happy being stagnant.”
NASA’s Goddard Space Flight Center/Tim Childers

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

I help Goddard’s Hubble Space Telescope Mission Operations Team to make sure that we’re taking care of the health and safety of the spacecraft. This includes commanding and playing back data from Hubble and working with the ground system and subsystems engineering teams to coordinate procedures, train people, schedule everyone, and manage resources.

How did you find your path to Goddard?

I graduated and wasn’t quite sure where a physics major would go for a position. So, I picked up a copy of Physics Today, went through every company in there, and sent out my résumé. After sending approximately 200, an application came back from Lockheed. It said to fill it out and send it to the Lockheed closest to you. There were 10 different locations, so I sent it to all 10. One day, there was a message on the answering machine that said, “Hey, Lynn, just wondering if you would like to work on a telescope in space for NASA.” The person who called, his name sounded like “Mr. Adventure,” and I gave him a call back and found out his name was Mr. Ed Venter. I can’t help but think it’s pretty cool, actually, because it has indeed been a great adventure!

What is your favorite part of working at Goddard?

Working with the spacecraft! Physically sending a command up and seeing it come back is just utterly amazing.

Over the years, I’ve had the luck of being able to meet several astronauts that have gone up in our servicing missions. In a couple cases, we had them visit us in the middle of the night on our long shifts. Meeting them is like meeting a rock star.

What first sparked your interest in space? Space was a combination of sci-fi and reality. The Apollo 11 Moon landing took place a couple of months after I was born, so my dad and I like to say that I was in front of the TV watching and it just got absorbed into my persona. One day, I saw Sally Ride up working in space and the TV said she had a background in physics, so I did physics.

Two vintage photos showing Lynn Bassford, a woman with long brown hair, in the 1990's. She wears a yellow T-shirt, jeans, and white tennis shoes in both photos. In the top photo, she sits at a desk wearing a headset and working on an old desktop computer, with books, manuals and other equipment visible behind her. In the lower photo, she poses in front of a full-scale model of the Hubble Space Telescope. Hubble looks like a silver cylinder with long, rectangular solar panels attached to each side.
Lynn Bassford says her favorite part of working at Goddard has always been working directly with the Hubble Space Telescope. “Physically sending a command up and seeing it come back is just utterly amazing,” she says.
Courtesy of Lynn Bassford

What is your educational background?

I was always very good at science and math and absolutely loved them. In middle school, I wanted to do astrogeology, but everyone I talked to said I kind of made that up. Now it’s all around the place! I went to University of Lowell for physics, which became UMass at Lowell. I ended up working for a physics professor who was also the head of the astronomy department.

You’ve held many roles over your years at Goddard. How do you feel that they’ve contributed to your current role as a manager?

Everything I’ve done aligns. I learn from everyone at all levels that I interact with. I did eight-and-a-half years of rotating shift work with flight operations, and I made sure that I moved across the room from console to console learning the different areas. Then I went into science instruments system engineering for over five years, where I became the lead. Then I moved into this role in mission operations, which combines those but also brings in employee performance, career growth, safety, diversity and inclusion, and engagement. Understanding what each area does and how they work together helps you optimize everything. It’s just a fact of my life to learn something new every day until the day I die. I’m not happy being stagnant.

How do you manage stressful situations when working with the telescope?

I don’t even think about how stressful it is because of the training I had in those early days: working with and learning from the experts about what you look at, who you call, what you do, and how to keep the telescope in a safe condition. Even during issues or service missions, we’re actually a very calm team.

What is your proudest accomplishment at Goddard?

When I was a Flight Operations Team shift supervisor in charge of my own crew for Hubble, on Jan. 6, 1996, we got hit with a three-foot snowstorm. Back in those days, we were on rotating shift work. When I left work that day, there was a light layer of snow, so I went home and collected whatever I could in the house for food, knowing there were at least five people on-site that might not go home. I drove back to work with half-a-foot of snow. Seven people stayed for two-and-a-half days straight. We pulled the foam coverings off the walls, piled them up in layers, and made a mattress out of it. We put it in one of the warmer inner offices so we could take turns sleeping eight hours and splitting 16 hours between working real-time operations and moving our vehicles from lot to lot for the Goddard snowplows. NASA gave us a small award afterwards.

Lynn Bassford, a woman with long brown hair, poses in a vintage photo with a group of other people, several holding printed pieces of paper. Lynn wears a green velvet jumper and white blouse, and her colleagues of various ages and genders wear work clothes like suits or flannel shirts with ties. They pose in front of a dark green background.
Lynn Bassford and the 1996 Hubble flight operations team received an award for keeping Hubble running during a three-foot snowstorm. “Seven people stayed for two-and-a-half days straight,” Lynn recalls.
NASA’s Goddard Space Flight Center

What is the coolest part of your job?

Hubble’s mission is just generally the coolest. It’s helping to discover, and to rewrite science books. Helping humanity discover what’s out there and move forward into the universe is groundbreaking.

What advice would you give to people looking to have jobs at Goddard?

For students, make sure you work hard even though college can be quite a challenge. That’s the intention – to get you thinking in all different ways and broaden your mind. Don’t give up, even when it’s challenging.

For workers, diversifying your interests and not specializing in one area will make you open to a lot of different opportunities that you might not know about. You need to keep learning in order to be the best asset to an employer.

Do you have a favorite space or Hubble fact?

Hubble is a green telescope! We had solar panels before houses did.

Lynn Bassford, a woman with wavy gray-brown hair, holds a tablet and speaks with members of the public at an event. She wears a bright blue shirt and jeans, and speaks to people in casual clothes who look intently at the tablet.
Lynn Bassford frequently helps out with Hubble outreach. “Hubble’s mission is just generally the coolest,” she says. “Helping humanity discover what’s out there and move forward into the universe is groundbreaking.”
Courtesy of Jim Jeletic

How do you like to spend your time outside of work?

My dedication to work and family takes up most of my time, admittedly. If I can fit it in, I like to walk outside, do artwork that involves Hubble, and do challenging sports like white water rafting and bungee jumping.

In the ’90s, I played on the men’s softball team at Goddard. I was a pitcher for the Hubble team.

What is your “six-word memoir”? A six-word memoir describes something in just six words. We’re all made of stardust, IDIC. IDIC stands for infinite diversity in infinite combinations – it comes from Star Trek’s Spock.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Hannah Richter

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Oct 17, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Axiom Mission 4 Undocking
    • By NASA
      Axiom Mission 4 Hatch Close
    • By NASA
      The Axiom Mission 4 and Expedition 73 crews join together for a group portrait inside the International Space Station’s Harmony module. In the front row (from left) are Ax-4 crewmates Tibor Kapu, Peggy Whitson, Shubhanshu Shukla, and Sławosz Uznański-Wiśniewski with Expedition 73 crewmates Anne McClain and Takuya Onishi. In the rear are, Expedition 73 crewmates Alexey Zubritskiy, Kirill Peskov, Sergey Ryzhikov, Jonny Kim, and Nichole Ayers.Credit: NASA NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
      The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
      Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
      The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Monday, July 14
      4:30 a.m. – Hatch closing coverage begins on NASA+.
      4:55 a.m. – Crew enters spacecraft followed by hatch closing.
      6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7:05 a.m. – Undocking
      NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jul 11, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Commercial Space Commercial Space Programs Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Snaps Galaxy Cluster’s Portrait
      This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209. ESA/Hubble & NASA, M. Postman, P. Kelly A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).
      This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.
      Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.
      While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jul 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Galaxy clusters Goddard Space Flight Center Gravitational Lensing Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Gravitational Lenses



      Focusing in on Gravitational Lenses



      Shining a Light on Dark Matter


      View the full article
    • By NASA
      The TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will help scientists understand an explosive process called magnetic reconnection and its effects in Earth’s atmosphere. Credit: University of Iowa/Andy Kale NASA will hold a media teleconference at 11 a.m. EDT on Thursday, July 17, to share information about the agency’s upcoming Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS, mission, which is targeted to launch no earlier than late July.
      The TRACERS mission is a pair of twin satellites that will study how Earth’s magnetic shield — the magnetosphere — protects our planet from the supersonic stream of material from the Sun called solar wind. As they fly pole to pole in a Sun-synchronous orbit, the two TRACERS spacecraft will measure how magnetic explosions send these solar wind particles zooming down into Earth’s atmosphere — and how these explosions shape the space weather that impacts our satellites, technology, and astronauts.
      Also launching on this flight will be three additional NASA-funded payloads. The Athena EPIC (Economical Payload Integration Cost) SmallSat, led by NASA’s Langley Research Center in Hampton, Virginia, is designed to demonstrate an innovative, configurable way to put remote-sensing instruments into orbit faster and more affordably. The Polylingual Experimental Terminal technology demonstration, managed by the agency’s SCaN (Space Communications and Navigation) program, will showcase new technology that empowers missions to roam between communications networks in space, like cell phones roam between providers on Earth. Finally, the Relativistic Electron Atmospheric Loss (REAL) CubeSat, led by Dartmouth College in Hanover, New Hampshire, will use space as a laboratory to understand how high-energy particles within the bands of radiation that surround Earth are naturally scattered into the atmosphere, aiding the development of methods for removing these damaging particles to better protect satellites and the critical ground systems they support.
      Audio of the teleconference will stream live on the agency’s website at:
      nasa.gov/live
      Participants include:
      Joe Westlake, division director, Heliophysics, NASA Headquarters Kory Priestley, principal investigator, Athena EPIC, NASA Langley Greg Heckler, deputy program manager for capability development, SCaN, NASA Headquarters David Miles, principal investigator for TRACERS, University of Iowa Robyn Millan, REAL principal investigator, Dartmouth College To participate in the media teleconference, media must RSVP no later than 10 a.m. on July 17 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online. 
      The TRACERS mission will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
      This mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s HeliophysicsDivision at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and University of California, Berkeley, all lead instruments on TRACERS that will study changes in the Earth’s magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the Venture-class Acquisition of Dedicated and Rideshare contract.
      To learn more about TRACERS, please visit:
      nasa.gov/tracers
      -end-
      Abbey Interrante / Karen Fox
      Headquarters, Washington
      301-201-0124 / 202-358-1600
      abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Share
      Details
      Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
      Earth Heliophysics Science Mission Directorate Solar Wind TRACERS View the full article
  • Check out these Videos

×
×
  • Create New...