Jump to content

60 Years Ago: NASA Selects Its Third Group of Astronauts


Recommended Posts

  • Publishers
Posted

On Oct. 17, 1963, NASA announced the selection of its third group of astronauts. Chosen from 720 military and civilian applicants, the newest group of 14 astronauts comprised the best educated class up to that time. Seven represented the U.S. Air Force, four the U.S. Navy, one the U.S. Marine Corps, and two were civilians. NASA selected them to fly the two-seat Gemini spacecraft designed to test techniques for the Apollo Moon landing program as well as the Apollo missions themselves. Tragically, four of their members died before making their first spaceflight. The 10 surviving members of the group flew 18 important missions in the Gemini and Apollo programs, with seven traveling to the Moon and four walking on its surface. In addition, one flew a long-duration mission aboard Skylab.

Group 3 astronauts pose following their introduction during the Oct. 17, 1963, press conference
The Group 3 astronauts pose following their introduction during the Oct. 17, 1963, press conference – front row, Edwin E. “Buzz” Aldrin, left, William A. Anders, Charles M. Bassett, Alan L. Bean, Eugene A. Cernan, and Roger B. Chaffee; back row, Michael Collins, left, R. Walter Cunningham, Donn F. Eisele, Theodore C. Freeman, Richard F. Gordon, Russell L. Schweickart, David R. Scott, and Clifton C. Williams.

On June 5, 1963, NASA announced that it would select 10-15 new candidates to augment the existing cadre of 15 active duty astronauts from its first two selections in 1959 and 1962. The agency had enough astronauts to staff the Gemini missions, but with Apollo missions then expected to begin in 1965, with up to four flights per year, it needed more astronauts. Selection criteria at the time for the candidates included U.S. citizenship, a degree in engineering or physical science, test pilot experience or 1,000 hours flying jets, 34 years old or younger, and no taller than six feet. From the 720 applications received by the July deadline, the selection board chose 136 candidates for further screening and narrowed that field down to 34 for extensive medical evaluations at Brooks Air Force Base (AFB) in San Antonio between July 31 and Aug. 15. The chair of the selection board, coordinator of astronaut activities Donald K. “Deke” Slayton, presented the names of the top 14 applicants to Robert R. Gilruth, director of the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, who approved the list. Slayton then called each of the winning candidates with the good news. On Oct. 17, he introduced the new astronauts during a press conference in Houston. On average, this third group of astronauts were younger, slightly taller and heavier than the previous two groups, and better educated, six with master’s degrees and one having earned a doctorate.

Mercury 7 astronaut and chief of operations and training for the astronaut office Walter M. Schirra
Mercury 7 astronaut and chief of operations and training for the astronaut office Walter M. Schirra, with back to camera, briefs the newly arrived 14 astronauts at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.

The Fourteen reported to work on Feb. 3, 1964, stationed initially at Houston’s Ellington AFB while construction of the MSC main campus on Clear Lake continued. During their first few months as astronauts, they visited various NASA centers and contractor facilities to become familiar with the space program’s major elements. Each astronaut received a technical assignment to gain expertise in specific aspects of spaceflight to pass their knowledge on to the rest of the group, and to help in the design of spacecraft, rockets, spacesuits, control systems, and simulators. Additionally, their 240-hour course work covered topics such as astronomy, aerodynamics, rockets, communications, space medicine, meteorology, upper atmospheric physics, navigation, orbital mechanics, computers, and geology. Because some of the group members could potentially receive assignments to land on the Moon, training including field trips to geologically interesting sites where they received instruction from geologists. They conducted jungle survival training in Panama, desert survival training around Reno, Nevada, and water survival training at the Pensacola, Florida, Naval Air Station.

Group 3 astronaut Russell L. “Rusty” Schweickart Schweickart, geologist Uel Clanton, Michael Collins, and Roger B. Chaffee during geology training near Bend, Oregon. David R. Scott and Richard F. Gordon examine a rock sample during a geology field trip to the Nevada Test Site at Yucca Flats
Left: Group 3 astronaut Russell L. “Rusty” Schweickart, center, gets hands on experience as capsule communicator (capcom) during Gemini IV, the first flight controlled from the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Schweickart, geologist Uel Clanton, Michael Collins, and Roger B. Chaffee during geology training near Bend, Oregon. Right: David R. Scott, left, and Richard F. Gordon examine a rock sample during a geology field trip to the Nevada Test Site at Yucca Flats.

Of the 14, seven came from the U.S. Air Force (USAF), four from the U.S. Navy (USN), one from the U.S. Marine Corps (USMC), and two were civilians at the time of selection but had military experience. The astronauts included Edwin E. “Buzz” Aldrin (USAF), William A. Anders (USAF), Charles M. Bassett (USAF), Alan L. Bean (USN), Eugene A. Cernan (USN), Roger B. Chaffee (USN), Michael Collins (USAF), R. Walter Cunningham (civilian), Donn F. Eisele (USAF), Theodore C. “Ted” Freeman (USAF), Richard F. Gordon (USN), Russell L. “Rusty” Schweickart (civilian), David R. Scott (USAF), and Clifton C. “CC” Williams (USMC). Williams had the distinction as the first bachelor astronaut, a distinction he lost in July 1964.

Group 3 astronaut Edwin E. “Buzz” Aldrin Astronaut William A. Anders Charles M. Bassett
Group 3 astronauts Edwin E. “Buzz” Aldrin, left, William A. Anders, and Charles M. Bassett.

Aldrin, who wrote his thesis on orbital rendezvous techniques for his Ph.D. in astronautics from the Massachusetts Institute of Technology in Cambridge, earned the nickname Dr. Rendezvous. Appropriately, Slayton tasked him to help with mission planning. Aldrin received his first crew assignment as the backup pilot for Gemini IX that included training for a spacewalk. He put that experience, plus additional training in a neutral buoyancy simulator, or underwater training to better simulate weightlessness, during his four-day Gemini XII flight during which he successfully completed three spacewalks. Moving on to the Apollo program, Aldrin next served as the backup Command Module Pilot (CMP) for the Apollo 8 first lunar orbital mission. As the prime Lunar Module Pilot (LMP) on Apollo 11, Aldrin became the second man to walk on the Moon in July 1969. He retired from NASA the following year.

Slayton assigned Anders, who held a master’s degree in nuclear engineering, to follow the development of environmental controls for Gemini and Apollo spacecraft. His first mission assignment came as the backup pilot for Gemini XI, and then as prime LMP on Apollo 8. He is credited with taking the famous Earthrise photo while he and his crewmates orbited the Moon. He served as backup CMP on Apollo 11, before retiring from NASA in August 1969 to join the National Aeronautics and Space Council.

Bassett’s technical assignment included training and simulators. Slayton assigned him as pilot on Gemini IX, a mission that included docking and a spacewalk. Tragically, on Feb. 28, 1966, just three months before their planned mission, Bassett and his command pilot Elliott M. See died in the crash of their T-38 Talon aircraft as they approached Lambert International Airport in St. Louis in inclement weather.

Alan L. Bean Eugene A. Cernan Roger B. Chaffee
Group 3 astronauts Alan L. Bean, left, Eugene A. Cernan, and Roger B. Chaffee.

Bean’s primary technical assignment involved spacecraft recovery systems. Slayton first assigned him as backup command pilot on Gemini X with Williams as his pilot. He next served as the backup LMP on Apollo 9, the first mission to test the Lunar Module (LM) in Earth orbit. That put him in position as the prime LMP on Apollo 12. During that mission he became the fourth man to walk on the Moon. He later served as the commander for the 59-day Skylab 3 mission in 1973 and as the backup commander for the Apollo-Soyuz Test Project (ASTP) in 1975. He retired from NASA in 1981.

Cernan, with a master’s in aeronautical engineering, followed the development of spacecraft propulsion and the Agena docking target for Gemini missions. Slayton assigned him as backup pilot for Gemini IX, and following the deaths of See and Bassett, Cernan and his commander Thomas P. Stafford took over as the prime crew. As luck would have it, they did not have a chance to dock with an Agena as it did not make it to orbit. Cernan conducted the second American spacewalk during that mission. He served as Aldrin’s backup on Gemini XII and then as the backup LMP on Apollo 7. That rotated him to the prime crew on Apollo 10, the dress rehearsal for the Moon landing during which he and Stafford took their LM to within nine miles of the lunar surface. He served as backup commander for Apollo 14, and then as prime commander of Apollo 17, the final Apollo Moon landing mission, he left the last footprints of that program in the lunar soil in December 1972. He remains one of only three people to have traveled to the Moon twice. He retired from NASA in 1976.

Chaffee’s technical assignment led him to follow the development of spacecraft communications systems. In March 1966, Slayton assigned him to the first crewed Apollo mission, along with commander Virgil I. “Gus” Grissom and senior pilot Edward H. White. Tragically, the three died on Jan. 27, 1967, in a fire aboard their spacecraft during a ground test on the launch pad.

Michael Collins R. Walter Cunningham Donn F. Eisele
Group 3 astronauts Michael Collins, left, R. Walter Cunningham, and Donn F. Eisele.

Collins, who had applied for the 1962 class but did not get selected, followed the development of pressure suits and spacewalking systems. As his first crew assignment, he served as the backup pilot for the long duration Gemini VII mission. He next served as the pilot for Gemini X, the first mission to complete a rendezvous with two Agena targets, and during which he conducted two spacewalks. He briefly served as the CMP on the Apollo 8 crew before being sidelined by surgery to correct a bone spur in his neck. After his recovery, he served as the CMP on Apollo 11, the first Moon landing mission. He retired from NASA in 1970, and went on to serve as the director of the Smithsonian Institution’s National Air and Space Museum in Washington, D.C., overseeing the building of its new facility that opened for the nation’s bicentennial in 1976.

Cunningham, who held a master’s degree in physics and had nearly completed work on his Ph.D. when selected, oversaw the development of ground-based experiments to support spaceflights. Slayton assigned him to the second crewed Apollo mission, along with classmate Eisele and Walter M. Schirra as their commander. Later, Slayton reassigned them to back up the first Apollo crew of Grissom, White, and Chaffee. After the Apollo fire, Schirra, Eisele, and Cunningham became the prime crew for Apollo 7, the first crewed Apollo flight. After working on the Skylab program, he retired from NASA in 1971.

Slayton assigned Eisele, who held a master’s degree in astronautics, to oversee the development of spacecraft attitude control systems. Slayton assigned Eisele, along with Schirra and Cunningham to the second crewed Apollo mission, then reassigned them to back up the first Apollo crew. After the fire, Schirra, Eisele, and Cunningham became the prime crew for the first Apollo mission, completing the 11-day Apollo 7 mission in October 1968. Eisele later served as the backup CMP for Apollo 10. He retired from NASA in 1972.

Theodore C. Freeman Richard F. Gordon Russell L. “Rusty” Schweickart.
Group 3 astronauts Theodore C. Freeman, left, Richard F. Gordon, and Russell L. “Rusty” Schweickart.

With a master’s degree in aeronautical engineering, Freeman’s technical assignment involved following the development of the various boosters for the Gemini and Apollo programs. Tragically, before he received a flight assignment, Freeman died in the crash of a T-38 Talon aircraft on Oct. 31, 1964, near Ellington AFB in Houston. He was the first active duty astronaut to perish.

Slayton put Gordon in charge of following the design of cockpit controls. Gordon’s first crew assignment was as backup pilot for Gemini VIII, the first docking mission. He next served as the pilot for Gemini XI that completed the docking with their Agena target on the first revolution. He conducted two spacewalks during that mission. On his next assignment, he served as the backup CMP for Apollo 9, and then as prime CMP on Apollo 12, the second Moon landing mission. His last official assignment as backup commander of Apollo 15 would have led him to most likely be commander of Apollo 18, but budget cuts in September 1970 canceled that mission. He retired from NASA the following year.

Schweickart, the youngest member of this astronaut class and with a master’s in aeronautics and astronautics, oversaw the development and integration of inflight experiments. First assigned in March 1966 as Chaffee’s backup on the first crewed Apollo mission, Schweickart and his crew mates James A. McDivitt and fellow classmate Scott were reassigned to the mission to carry out the first in-orbit test of the LM. They flew that mission as Apollo 9 in March 1969. Schweickart later served as the backup commander of the first Skylab crew. He retired from NASA in 1977.

David R. Scott Clifton C. “CC” Williams
Group 3 astronauts David R. Scott, left, and Clifton C. “CC” Williams.

Slayton placed Scott, who held a master’s degree in aeronautics and astronautics, in charge of monitoring the development of guidance and navigation systems. On his first crew assignment, he served as pilot on Gemini VIII, the mission that featured the first docking with an Agena target and the first in-space emergency requiring an immediate return to Earth. Just days after that harrowing flight in March 1966, Scott was named to the backup crew for the first Apollo mission, but later he, McDivitt, and Schweickart were reassigned to the first flight to test the LM in space, the flight that flew as Apollo 9 in March 1969. Scott next served as backup commander of Apollo 12, then as prime commander of Apollo 15. He became the seventh man to walk on the Moon and the first to drive there, using the Lunar Roving Vehicle. After leaving the astronaut corps, he served first as the deputy director and then the director of NASA’s Dryden, now Armstrong, Flight Research Center at Edwards AFB in California’s Mojave Desert. He retired from NASA in 1977.

Williams, the only Marine and lone bachelor of the group (he married in July 1964), oversaw range operations and crew safety. Slayton assigned Williams as the backup pilot for Gemini X, and later he served as the LMP on a backup crew for the first flight of the LM in Earth orbit, along with Charles “Pete” Conrad and fellow classmate Gordon. Tragically, Williams died in the crash of a T-38 Talon aircraft near Tallahassee, Florida, on Oct. 5, 1967. Bean replaced him on Conrad’s crew, that became the Apollo 9 backup crew and ultimately the prime crew for Apollo 12. At Bean’s suggestion, Williams is memorialized on the Apollo 12 crew patch as a fourth star, the other three stars representing the actual flight crew.

Summary of spaceflights by Group 3 astronauts.
Summary of spaceflights by Group 3 astronauts. The boxes with flight names in italics represent astronauts who died before they could undertake the mission.

As a group, The Fourteen tragically had the highest mortality rate of any astronaut class. The surviving 10 astronauts completed a total of 18 flights, five Gemini missions, 12 Apollo missions, and one Skylab mission. Of the group, Collins received the first crew assignment as Gemini VII backup pilot, while Scott made the first spaceflight on Gemini VIII. Bean made the last spaceflight by a Fourteen, as commander of Skylab 3 in 1973, and also the last to receive a crew assignment as the backup commander for the ASTP mission in 1975. Seven of The Fourteen traveled to the Moon, one of them twice, and four walked on its dusty surface. One even drove on it.

Michael Collins, lower left, the first of The Fourteen to receive a crew assignment as backup pilot on Gemini VII David R. Scott, lower left, received the first assignment to a prime crew as Gemini VIII pilot – fellow Fourteen Richard F. Gordon was assigned as his backup Scott awaits launch inside Gemini VIII.
Left: Michael Collins, lower left, the first of The Fourteen to receive a crew assignment as backup pilot on Gemini VII. Middle: David R. Scott, lower left, received the first assignment to a prime crew as Gemini VIII pilot – fellow Fourteen Richard F. Gordon was assigned as his backup. Right: Scott awaits launch inside Gemini VIII.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Sunlight gleams off NASA’s Lunar Trailblazer as the dishwasher-size spacecraft orbits the Moon in this artist’s concept. The mission will discover where the Moon’s water is, what form it is in, and how it changes over time, producing the best-yet maps of water on the lunar surface.Lockheed Martin Space The small satellite mission will map the Moon to help scientists better understand where its water is, what form it’s in, how much is there, and how it changes over time.
      Launching no earlier than Wednesday, Feb. 26, NASA’s Lunar Trailblazer will help resolve an enduring mystery: Where is the Moon’s water? After sharing a ride on a SpaceX Falcon 9 rocket with Intuitive Machines’ IM-2 launch — part of NASA’s CLPS (Commercial Lunar Payload Services) initiative — the small satellite will take several months to arrive in lunar orbit.
      Here are six things to know about the mission.
      1. Lunar Trailblazer will produce high-resolution maps of water on the lunar surface.
      One of the biggest lunar discoveries in recent decades is that the Moon’s surface has quantities of water, but little about its nature is known. To investigate, Lunar Trailblazer will decipher where the water is, what form it is in, how much is there, and how it changes over time. The small satellite will produce the best-yet maps of water on the lunar surface. Observations gathered during the two-year prime mission will also contribute to the understanding of water cycles on airless bodies throughout the solar system.
      2. The small satellite will use two state-of-the-art science instruments.
      Key to achieving these goals are the spacecraft’s two science instruments: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager. NASA’s Jet Propulsion Laboratory in Southern California provided the HVM3 instrument, while LTM was built by the University of Oxford and funded by the UK Space Agency.  
      HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The LTM instrument will map the minerals and thermal properties of the same landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time and temperature.
      Fueled and attached to an adaptor used for secondary payloads, NASA’s Lunar Trailblazer is seen at SpaceX’s payload processing facility within NASA’s Kennedy Space Center in Florida in early February 2025. The small satellite is riding along on Intuitive Machines’ IM-2 launch.SpaceX 3. Lunar Trailblazer will take a long and winding road to the Moon.
      Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide with its solar panels fully deployed, Lunar Trailblazer is about the size of a dishwasher and relies on a relatively small propulsion system. To make the spacecraft’s four-to-seven-month trip to the Moon (depending on the launch date) as efficient as possible, the mission’s design and navigation team has planned a looping trajectory that will use the gravity of the Sun, Earth, and Moon to guide Lunar Trailblazer to its final science orbit — a technique called low-energy transfer.
      4. The spacecraft will peer into the darkest parts of the Moon’s South Pole.
      Lunar Trailblazer’s science orbit positions it to peer into the craters at the Moon’s South Pole using the HVM3 instrument. What makes these craters so intriguing is that they harbor cold traps that may not have seen direct sunlight for billions of years, which means they’re a potential hideout for frozen water. The HVM3 spectrometer is designed to use faint reflected light from the walls of craters to see the floor of even permanently shadowed regions. If Lunar Trailblazer finds significant quantities of ice at the base of the craters, those locations could be pinpointed as a resource for future lunar explorers.
      5. Lunar Trailblazer is a high-risk, low-cost mission.
      Lunar Trailblazer was a 2019 selection of NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration), which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain a lower overall cost, SIMPLEx missions have a higher risk posture and lighter requirements for oversight and management. This higher risk acceptance allows NASA to enable science missions that could not otherwise be done.
      6. Future missions will benefit from Lunar Trailblazer’s data.
      Mapping the Moon’s water supports future human and robotic lunar missions. With knowledge from Lunar Trailblazer of where water is located, astronauts could process lunar ice to create water for human use, breathable oxygen, or fuel. And they could conduct science by sampling the ice for later study to determine the water’s origins.
      More About Lunar Trailblazer
      Lunar Trailblazer is led by Principal Investigator Bethany Ehlmann of Caltech in Pasadena, California. Caltech also leads the mission’s science investigation, and Caltech’s IPAC leads mission operations, which includes planning, scheduling, and sequencing of all spacecraft activities. NASA JPL manages Lunar Trailblazer and provides system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. JPL is managed by Caltech for NASA. Lockheed Martin Space provided the spacecraft, integrated the flight system, and supports operations under contract with Caltech. The University of Oxford developed and provided the LTM instrument, funded by the UK Space Agency. Lunar Trailblazer, part of NASA’s Lunar Discovery Exploration Program, is managed by NASA’s Planetary Mission Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
      News Media Contact
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Isabel Swafford
      Caltech IPAC
      626-216-4257
      iswafford@ipac.caltech.edu
      2025-027
      Share
      Details
      Last Updated Feb 26, 2025 Related Terms
      Lunar Trailblazer Commercial Lunar Payload Services (CLPS) Earth's Moon Lunar Science Explore More
      1 min read Intuitive Machines’ IM-2 Mission
      Article 1 day ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 1 day ago 4 min read Five Facts About NASA’s Moon Bound Technology
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      NASA Open Data Turns Science Into Art
      Guests enjoy Beyond the Light, a digital art experience featuring open NASA data, at ARTECHOUSE in Washington, D.C. on September 19, 2023. NASA/Wade Sisler An art display powered by NASA science data topped the Salesforce Tower in San Francisco, CA throughout December 2024. Nightly visitors enjoyed “Synchronicity,” a 20-minute-long video art piece by Greg Niemeyer, which used a year’s worth of open data from NASA satellites and other sources to bring the rhythms of the Bay Area to life.
      Data for “Synchronicity” included atmospheric data from NASA and NOAA’s GOES (Geostationary Operational Environmental Satellites), vegetation health data from NASA’s Landsat program, and the Sun’s extreme ultraviolet wavelengths as captured by the NASA and ESA (European Space Agency) satellite SOHO (Solar and Heliospheric Observatory). Chelle Gentemann, the program scientist for the Office of the Chief Science Data Officer within NASA’s Science Mission Directorate, advised Niemeyer on incorporating data into the piece.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Greg Niemeyer’s “Synchronicity” was displayed on Salesforce Tower in San Francisco, CA, in December 2024. A recording of the piece on the tower’s display and the original animation are shown here. The video art piece was created using open NASA data, as well as buoy data from the National Oceanographic and Atmospheric Administration (NOAA). Greg Niemeyer/Emma Strebel “Artists have a lot to contribute to science,” Gentemann said. “Not only can they play a part in the actual scientific process, looking at things in a different way that will lead to new questions, but they’re also critical for getting more people involved in science.”
      NASA’s history of engaging with artists goes back to the 1962 launch of the NASA Art Program, which partnered with artists in bringing the agency’s achievements to a broader audience and telling the story of NASA in a different and unexpected way. Artists such as Andy Warhol, Norman Rockwell, and Annie Leibovitz created works inspired by NASA missions. The Art Program was relaunched in September 2024 with a pair of murals evoking the awe of space exploration for the Artemis Generation.
      The inaugural murals for the relaunched NASA Art Program appear side-by-side at 350 Hudson Street, Monday, Sept. 23, 2024, in New York City. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. NASA/Joel Kowsky The use of NASA data in art pieces emerged a few decades after the NASA Art Program first launched. Several in-house agency programs, such as NASA’s Scientific Visualization Studio, create stunning animated works from science data. In the realm of audio, NASA’s Chandra X-ray Observatory runs the Universe of Sound project to convert astronomy data into “sonifications” for the public’s listening pleasure.
      Collaborations with external artists help bring NASA data to an even broader audience. NASA’s commitment to open science – making it as easy as possible for the public to access science data – greatly reduces the obstacles for creatives looking to fuse their art with cutting-edge science.
      Michelle Thaller, assistant director for science communication at Goddard, presents the “Pillars of Creation” in the Eagle nebula to the ARTECHOUSE team during a brainstorming session at Goddard. The left image is a view from the Hubble Space Telescope, and the right view is from the Webb telescope. NASA/Wade Sisler Another recent blend of NASA data and art came when digital art gallery ARTECHOUSE created “Beyond the Light,” a 26-minute immersive video experience featuring publicly available images from the James Webb Space Telescope and Hubble Space Telescope. The experience has been running at various ARTECHOUSE locations since September 2023. The massive potential for art to incorporate science data promises to fuel even more of these collaborations between NASA and artists in the future.
      “One of the integral values of open science is providing opportunities for more people to participate in science,” Gentemann said. “I think that by getting the public interested in how this art is done, they also are starting to play with scientific data, maybe for the first time. In that way, art has the power to create new scientists.”
      Learn more about open science at NASA at https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Open Science Explore More
      4 min read NASA Open Science Reveals Sounds of Space


      Article


      2 months ago
      4 min read NASA AI, Open Science Advance Disaster Research and Recovery


      Article


      3 months ago
      4 min read Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open


      Article


      5 months ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Mars Perseverance Rover


      The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-9 mission, including NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, along with Roscosmos cosmonaut Aleksandr Gorbunov, pose for a photo aboard the International Space StationNASA Media are invited to hear from NASA’s SpaceX Crew-9 astronauts during a news conference beginning at 11:55 a.m. EST, Tuesday, March 4, from the International Space Station.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore will discuss their return to Earth on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m. Monday, March 3, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the news conference no later than 15 minutes prior to the start of the call. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
      Crew-9 contributed to hundreds of scientific experiments, including swabbing the station’s exterior for microbes, printing 3D medical devices, and studying how moisture, orbital altitude, and ultraviolet light affect plant growth.
      The crew will depart the space station after the arrival of Crew-10 and a short handover period. Ahead of Crew-9’s return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.
      The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Follow updates on the Crew-9 mission at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Astronauts Barry E. Wilmore International Space Station (ISS) Sunita L. Williams
      View the full article
    • By NASA
      Intuitive Machines-2: Delivering Science and Tech to the Moon (NASA Mission Trailer)
    • By NASA
      Intuitive Machines-2 Launch to the Moon (Official NASA Broadcast)
  • Check out these Videos

×
×
  • Create New...