Jump to content

40 Years Ago: Space Shuttle Discovery Makes its Public Debut


Recommended Posts

  • Publishers
Posted

On Oct. 16, 1983, NASA’s newest space shuttle, Discovery, made its public debut during a rollout ceremony at its manufacturing plant in Palmdale, California. Under construction for three years, Discovery joined NASA’s other two space-worthy orbiters, Columbia and Challenger, and atmospheric test vehicle Enterprise. The rollout ceremony, attended by NASA and other officials, also featured the astronauts assigned to Discovery’s first mission, STS-41D, then planned for launch in June 1984. By the time NASA retired Discovery in 2011, it had flown 39 missions, more than any other orbiter, in a career spanning 26 years and flying every type of mission envisioned for the space shuttle. The Smithsonian Institution’s National Air and Space Museum has Discovery on display at its Stephen F. Udvar-Hazy Center in Chantilly, Virginia.

Space shuttle Discovery under construction at Rockwell International’s Palmdale, California, plant in  August 1982 Space shuttle Discovery under construction at Rockwell International’s Palmdale, California, plant in September 1982 Space shuttle Discovery under construction at Rockwell International’s Palmdale, California, plant in April 1983.
Space shuttle Discovery under construction at Rockwell International’s Palmdale, California, plant in  August 1982, left, September 1982, and April 1983.

On Jan. 25, 1979, NASA announced the names of the first four space-worthy orbiters – Columbia, Challenger, Discovery, and Atlantis. Like the other vehicles, NASA named Discovery after historical vessels of exploration – Captain James Cook’s HMS Discovery used during his third and final voyage (1776-1779) and Henry Hudson’s Discovery used during his 1610-1611 search for the Northwest Passage. On Jan. 29, NASA signed the contract with Rockwell International of Downey, California, to build and deliver Discovery. Construction began in June 1980 and finished in February 1983. The newest orbiter included several upgrades from the two earlier vehicles, and through more extensive use of blankets instead of tiles in the thermal protection system, weighed 6,870 pounds less than Columbia. After completion of systems testing, workers prepared Discovery for its first public appearance.

: Overhead view of space shuttle Discovery during the rollout ceremony at Rockwell International’s Palmdale, California, plant The astronauts assigned to Discovery’s first mission, STS-41D, speak to the assembled crowd Five of the six STS-41D crew members, Richard M. “Mike” Mullane, kneeling left, Steven A. Hawley, Henry W. “Hank” Hartsfield, standing left, Judith A. Resnik, and Michael L. Coats, pose with Discovery as a backdrop
Left: Overhead view of space shuttle Discovery during the rollout ceremony at Rockwell International’s Palmdale, California, plant. Middle: The astronauts assigned to Discovery’s first mission, STS-41D, speak to the assembled crowd. Right: Five of the six STS-41D crew members, Richard M. “Mike” Mullane, kneeling left, Steven A. Hawley, Henry W. “Hank” Hartsfield, standing left, Judith A. Resnik, and Michael L. Coats, pose with Discovery as a backdrop.

The rollout ceremony for Discovery took place on Oct. 16, 1983, at Rockwell International’s Palmdale facility, attended by hundreds of employees and visitors. In addition to NASA and other dignitaries, five of the six the astronauts assigned to Discovery’s first mission also participated, thanking the assembled employees for their hard work in building their spacecraft. They included STS-41D Commander Henry W. “Hank” Hartsfield, Pilot Michael L. Coats, and Mission Specialists Richard M. “Mike” Mullane, Steven A. Hawley, and Judith A. Resnik. Payload Specialist Charles D. Walker could not attend.

Workers tow Discovery the 36 miles from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert.
Workers tow Discovery the 36 miles from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert.

Space shuttle Discovery atop its Shuttle Carrier Aircraft (SCA) flies over Vandenberg Air Force Base Workers at Vandenberg use Discovery and its SCA to test the Orbiter Lifting Fixture Discovery atop the SCA arrives at NASA’s Kennedy Space Center in Florida
Left: Space shuttle Discovery atop its Shuttle Carrier Aircraft (SCA) flies over Vandenberg Air Force Base. Middle: Workers at Vandenberg use Discovery and its SCA to test the Orbiter Lifting Fixture. Right: Discovery atop the SCA arrives at NASA’s Kennedy Space Center in Florida.

Following the ceremony, workers trucked Discovery 36 miles overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB) in California’s Mojave Desert, the trip taking about 10 hours. In the Mate-Demate Device (MMD), workers placed Discovery atop the Shuttle Carrier Aircraft (SCA), a modified Boeing 747, to begin the ferry flight. The first leg of the journey started on Nov. 6 with a stop at Vandenberg AFB on the California coast, where workers used Discovery and the SCA to test the Orbiter Lifting Fixture, a scaled down version of the MDD planned for use exclusively at Vandenberg. At the time, NASA and the Department of Defense planned to fly space shuttles, with Discovery as the designated orbiter, from Vandenberg’s Space Launch Complex-6 on military polar orbital missions, beginning with STS-62A in 1986. The agencies mothballed those plans following the Challenger accident. From Vandenberg, on Nov. 8 the SCA carried Discovery to Carswell AFB near Ft. Worth for an overnight refueling stop, before continuing to NASA’s Kennedy Space Center in Florida on Nov. 9. The following day, workers towed Discovery to the Orbiter Processing Facility (OPF) for initial receiving inspections. After a move to the nearby Vehicle Assembly Building (VAB) on Dec. 9 for temporary storage, workers returned Discovery to the OPF on Jan. 10, 1984, to begin processing it for its first flight.

In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida workers prepare to lift Discovery for mating with its External Tank and twin Solid Rocket Boosters The completed stack is ready for its rollout to Launch Pad 39A Space shuttle Discovery begins its rollout from the VAB to Launch Pad 39A.
Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida workers prepare to lift Discovery for mating with its External Tank and twin Solid Rocket Boosters. Middle: The completed stack is ready for its rollout to Launch Pad 39A. Right: Space shuttle Discovery begins its rollout from the VAB to Launch Pad 39A.

The Flight Readiness Firing of Discovery’s three main engines. With Discovery as a back drop, STS-41D astronauts Michael L. Coats, left, Charles D. Walker, Steven A. Hawley, Judith A. Resnik, Richard M. “Mike” Mullane, and Henry W. “Hank” Hartsfield pose for photographers following the countdown demonstration test The launch abort Discovery finally takes to the skies
Left: The Flight Readiness Firing of Discovery’s three main engines. Middle left: With Discovery as a back drop, STS-41D astronauts Michael L. Coats, left, Charles D. Walker, Steven A. Hawley, Judith A. Resnik, Richard M. “Mike” Mullane, and Henry W. “Hank” Hartsfield pose for photographers following the countdown demonstration test. Middle right: The launch abort. Right: Discovery finally takes to the skies!

Four months later, on May 12, workers towed Discovery from the OPF to the VAB and mated it to an External Tank and twin Solid Rocket Boosters. The entire stack rolled out to Launch Pad 39A on May 19 in preparation for the planned June 25 launch of the STS-41D mission. As with any new orbiter, on June 2 NASA conducted a 20-second Flight Readiness Firing of Discovery’s three main engines. On June 14, the six-person crew participated in a countdown demonstration test. They boarded Discovery on June 25 for a launch attempt that aborted at the T minus nine-minute mark due to a failure of Discovery’s back-up General Purpose Computer. Technicians replaced the failed unit with one from Challenger for another launch attempt the next day. This time Discovery’s onboard computer aborted the launch four seconds before liftoff but after two of the three main engines had already ignited, resulting in some anxious moments in the crew compartment. To ease the tension, Hawley is reported to have said something along the lines of, “Gee, I thought we’d be a little higher when the engines shut off.” To make matters worse, a hydrogen fire at the base of the launch pad activated the fire suppression system, forcing the crew to evacuate the spacecraft under a deluge of water. The problem with the center engine required a replacement that engineers completed at the pad between July 3 and 5. But the delay caused NASA managers to shuffle payloads and launch schedules, and that required Discovery’s return to the VAB on July 14. Workers destacked the orbiter to return it to the OPF for the payload changes. That completed, and after restacking in the VAB, Discovery returned to Launch Pad 39A on Aug. 9 for a launch attempt 20 days later. A hardware problem resulted in a one-day delay, and finally on Aug. 30 Discovery lifted off on its first mission to space.

Space shuttle Discovery in the Smithsonian Institution’s Stephen F. Udvar-Hazy Center of the National Air and Space Museum in Chantilly, Virginia
Space shuttle Discovery in the Smithsonian Institution’s Stephen F. Udvar-Hazy Center of the National Air and Space Museum in Chantilly, Virginia. Image credit: courtesy National Air and Space Museum.

In the course of its 39 missions spanning more than 26 years, Discovery flew virtually every type of mission envisioned for the space shuttle, including government and commercial satellite deployments and retrievals, launching and servicing scientific observatories such as the Hubble Space Telescope, resupplying the Russian Mir space station, and assembling and maintaining the International Space Station. Discovery also flew the return to flight missions after both the Challenger and Columbia accidents. Discovery flew its final mission, STS-133, in February 2011. The following year, the Smithsonian Institution’s National Air and Space Museum placed space shuttle Discovery on display at its Stephen F. Udvar-Hazy Center in Chantilly, Virginia.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
      An artist’s concept showing Parker Solar Probe. Credits:
      NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
      Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
      This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
      Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
      Nicky fox
      NASA Associate Administrator, Science Mission Directorate
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
      NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
      Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
      Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
      “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
      Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
      The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
      By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
      “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
      Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
      Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
      Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
      So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
      The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
      Joe Westlake
      Heliophysics Division Director, NASA Headquarters
      “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
      The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time


      Article


      3 years ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      2 months ago
      6 min read 10 Things to Know About Parker Solar Probe
      On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…


      Article


      6 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      ESA (European Space Agency) astronaut Samantha Cristoforetti pictured aboard the International Space Station on Dec. 20, 2014, during Expedition 42.Credit: NASA Crew members aboard the International Space Station celebrate the holiday season in a unique way while living and working at the orbiting laboratory. Each crew member, including the current Expedition 72, spends time enjoying the view of Earth from the space station, privately communicating with their friends and families, and sharing a joint meal with their expedition crewmates, while continuing experiments and station maintenance.
      This view of the rising Earth greeted the Apollo 8 astronauts William Ander, Frank Borman, and James Lovell on Dec. 24, 1968, as they approached from behind the Moon after the fourth nearside lunar orbit.Credit: NASA As the first crew to spend Christmas in space and leave Earth orbit, Apollo 8 astronauts Frank Borman, James Lovell, and William Anders, celebrated while circling the Moon in December 1968. The crew commemorated Christmas Eve by reading opening verses from the Bible’s Book of Genesis as they broadcast scenes of the lunar surface below. An estimated one billion people across 64 countries tuned in to the crew’s broadcast.
      Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue trim their homemade Christmas tree in December 1973. Credit: NASA In 1973, Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue celebrated Thanksgiving, Christmas, and New Year’s in space, as the first crew to spend the harvest festival and ring in the new year while in orbit. The crew built a homemade tree from leftover food containers, used colored decals as decorations, and topped it with a cardboard cutout in the shape of a comet. Carr and Pogue conducted a seven-hour spacewalk to change out film canisters and observe the passing Comet Kohoutek on Dec. 15, 1973. Once back inside the space station, the crew enjoyed a holiday dinner complete with fruitcake, communicated with their families, and opened presents.

      NASA astronaut Jeffrey Hoffman pictured with a dreidel during Hanukkah in December 1993.Credit: NASA After NASA launched the agency’s Hubble Space Telescope into Earth’s orbit in 1990, NASA sent a space shuttle crew on a mission, STS-61, to service the telescope. In 1993, NASA astronaut Jeffrey Hoffman celebrated Hanukkah after completing the third spacewalk of the servicing mission. Hoffman celebrated with a traveling menorah and dreidel.
      STS103-340-036 (19-27 December 1999) — Wearing Santa hats, astronauts John M. Grunsfeld and Steven L. Smith blend with the season for a brief celebration on the mid deck of the Space Shuttle Discovery. The interruption was very brief as the two mission specialists shortly went about completing their suit-up process in order to participate in STS-103 space walk activity, performing needed work on the Hubble Space Telescope (HST).Credit: NASA As NASA continued to support another Hubble Space Telescope servicing mission, the STS-103 crew celebrated the first space shuttle Christmas aboard Discovery in 1999. NASA astronauts Curtis Brown, Scott Kelly, Steven Smith, John Grunsfeld, and Michael Foale, along with ESA (European Space Agency) astronauts Jean-François Clervoy and Claude Nicollier enjoyed duck foie gras on Mexican tortillas, cassoulet, and salted pork with lentils. Smith and Grunsfeld completed repairs on the telescope during a spacewalk on Dec. 24, 1999, and at least one American astronaut has celebrated Christmas in space every year since.

      Expedition 1 crew members Yuri Gidzenko of Roscosmos, left, NASA astronaut William Shepherd, and Sergei Krikalev of Roscosmos reading a Christmas message in December 2000.
      Credit: NASA In November 2000, the arrival of Expedition 1 crew members, NASA astronaut William Shepherd and Roscosmos cosmonauts Yuri Gidzenko and Sergei Krikalev, aboard the International Space Station, marked the beginning of a continuous presence in space. As the first crew to celebrate the holiday season at the laboratorial outpost, they began the tradition of reading a goodwill message to those back on Earth. Shepherd honored a naval tradition of writing a poem as the first entry of the new year in the ship’s log.

      For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, through which astronauts have learned to live and work in space for extended periods of time. As NASA supports missions to and from the station, crew members have continued to celebrate the holidays in space.
      Expedition 4 crew members, NASA astronauts Daniel Bursch and Carl Walz, along with Roscosmos cosmonaut Yuri Onufriyenko, pose for a Christmas photo in December 2001. Credit: NASA Expedition 8 crew members, NASA astronaut Michael Foale, left, and Roscosmos cosmonaut Aleksandr Kaleri, right, celebrate Christmas in December 2003. Credit: NASA Expedition 10 crew members, Roscosmos cosmonaut Salizhan Sharipov, left, and NASA astronaut Leroy Chiao, right, celebrate New Year’s Eve in December 2004.Credit: NASA Expedition 12 crew members, Roscosmos cosmonaut Tokarev, left, and NASA astronaut William McArthur, pose with Christmas stockings in December 2005. NASA Expedition 14 crew members, Roscosmos cosmonaut Mikhail Tyurin, left, and NASA astronauts Michael Lopez-Alegria and Suni Williams pose wearing Santa hats in December 2006.Credit: NASA Expedition 16 crew members, Roscosmos cosmonaut Yuri Malenchenko, left, and NASA astronauts Peggy Whitson and Daniel Tani, with Christmas stockings and presents in December 2007. Expedition 18 crew members enjoy Christmas dinner in December 2008. Expedition 22 crew members gather around the dinner table in December 2009.Credit: NASA Expedition 26 crew members celebrates New Year’s Eve in December 2010.Credit: NASA Expedition 30 crew members pictured in December 2011.Credit: NASA Expedition 34 crew members pictured in December 2012. Credit: NASA Expedition 42 crew members leave milk and cookies for Santa and hang stockings using the airlock as a makeshift chimney in December 2013.Credit: NASA Expedition 50 crew members celebrate New Year’s Eve in December. Credit: NASA Expedition 54 crew member NASA astronaut Mark Vande Hei pictured as an elf for Christmas in December 2017.Credit: NASA Expedition 58 crew members inspect stockings for presents in December 2018 Expedition 61 crew member NASA astronaut Jessica Meir pictured with Hanukkah-themed socks in the cupola in December 2019. Expedition 61 crew members NASA astronauts Andrew Morgan, Christina Koch, and Jessica Meir, along with ESA (European Space Agency) astronaut Luca Parmitano share a holiday message on Dec. 23, 2019, from the International Space Station.Credit: NASA NASA astronaut Kayla Barron pictured with presents she wrapped for her crewmates in December 2021.Credit: NASA Expedition 68 crew members wear holiday outfits in December 2022.Credit: NASA Expedition 70 flight engineer NASA astronaut Jasmin Moghbeli’s husband and daughters made a felt menorah for her to celebrate Hanukkah during her mission. Since astronauts can’t light real candles aboard the space station, Moghbeli pinned felt “lights” for each night of the eight-day holiday. A dreidel spun in weightlessness will continue spinning until it comes in contact with another object but can’t land on any of its four faces. Expedition 70 crew members recorded a holiday message for those back on Earth.

      Expedition 70 NASA astronaut Jasmin Moghbeli’s felt menorah and dreidel that she used to celebrate Hanukkah in December 2023. Credit: NASA NASA astronauts Don Pettit and Suni Williams, Expedition 72 flight engineer and commander respectively, pose for a fun holiday season portrait while speaking on a ham radio inside the International Space Station’s Columbus laboratory module. Credit: NASA To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Expedition 72 video holiday message from the International Space Station. Credit: NASA The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. The orbiting laboratory is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under the Artemis campaign and, ultimately, human exploration of Mars.

      Go here for more holiday memories onboard the space station. To learn more about the International Space Station, its research, and its crew, at:

      https://www.nasa.gov/station

      News Media Contacts:
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov

      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
  • Check out these Videos

×
×
  • Create New...