Jump to content

Failure Analysis


NASA

Recommended Posts

  • Publishers

Failure analysis determines what, why and how things went wrong when a component, system, or structure fails and  is a valuable tool in the development of new products and the improvement of existing ones.  

Our multi-disciplined team has the expertise and in-house capabilities to determine the root cause of failures on a wide range of materials including paints and coatings, adhesives and sealants, composites, rubbers, plastics, elastomers, and metals. We routinely apply our expert knowledge of oxygen systems, composite pressure systems, propellants and aerospace fluids, and propulsion systems to root cause analysis and offer expert recommendations for improvements and corrective action.

wstf0187-0004.jpg?w=1041
WSTF Staff

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In the heart of NASA’s Johnson Space Center in Houston, a team of photographers, imagery acquisition specialists, analytic scientists, and graphic designers work together to create visual narratives that capture the defining moments of space exploration with creativity and precision. 

      From the Apollo missions to the Artemis campaign, these images, videos, and graphics chronicle NASA’s rich history and the people behind its monumental missions. 
      Official portrait of the Artemis II crew.NASA/Josh Valcarcel Each team at Johnson within Mission Imagery, the ISAG (Image Science and Analysis Group), and NASA’s OCOMM (Office of Communications) plays a role in this effort, ensuring the accuracy and artistry of visual narratives that have inspired generations.  

      “Behind every great leap for mankind, there is the courage, determination, and teamwork of people committed to pushing the boundaries of what’s possible,” said NASA photographer Josh Valcarcel.  
      Space Shuttle Enterprise atop the Shuttle Carrier Aircraft as it flies over New York City on April 27, 2012. NASA/Robert Markowitz “We consider ourselves exceptionally fortunate to contribute our passion to an esteemed agency, aiming to evoke joy and enduring memories through our imagery,” said NASA photographer Robert Markowitz.  

      Operating eight camera systems, the imagery acquisition group captures a range of visuals, from HD video and high-speed digital motion pictures to spherical 360 panoramas. These visuals document everything from engineering tests to astronaut training and mission control operations. The team is certified to fly on parabolic flights, T-38 jets, and helicopters, capturing pivotal moments in space exploration history. 

      “The duty to bear witness to events or conversations and preserve these moments in time – not only for those who cannot, but for the record books – is a noble cause,” said NASA photographer Helen Arase Vargas.  

      After capturing the imagery, the photo operations team processes these visuals using advanced software to enhance quality, perform color correction, and ensure they meet NASA’s high standards. Every frame is meticulously archived, including photos taken by astronauts aboard the International Space Station, preserving them for future generations. 

      “None of what we deliver would be possible without the work of the photo laboratory,” said Mark Sowa, the imagery acquisition group lead who brings over three decades of experience in scientific photography to his role.  
      The team also manages the care and handling of original Apollo mission films, which are preserved in a specially built cold storage vault. The goal is to preserve Apollo era spaceflight films – in both the digital and physical formats – for generations to come. 
      The cold storage film vault at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz The ISAG is charged with a different but equally critical mission. This team of scientists performs complex and in-depth analysis of engineering imagery. Their work involves evaluating space vehicle performance, dynamic events, and anomalies by measuring distances, sizes, motion, and hardware conditions to uncover crucial mission insights.  

      Their data visualization techniques bring these analyses to life, contributing to successful mission execution.

      “At NASA we often say ‘the camera is the mission’ because in every image, there’s a story to be told – whether it’s one of engineering analysis or human inspiration,” said Dr. Kenton Fisher, the ISAG lead. “Our work helps ensure crew safety and provides insights that drive the next giant leap in space exploration.”
      The Artemis I test flight marks the safe return of the Orion spacecraft to Earth.NASA/Josh Valcarcel NASA’s Orion spacecraft for Artemis I after splashdown in the Pacific Ocean on December 11, 2022.NASA/James Blair NASA’s OCOMM graphics team works closely with the imagery acquisition group, astronauts, and subject matter experts to create visuals that symbolize NASA’s missions and values.

      From patches to educational infographics, their art reaches museums and schools nationwide, inspiring future generations and showcasing NASA’s commitment to exploration, innovation, and education. 
      A compilation of NASA’s graphics team highlights from 2023. “Every design we create is a piece of a larger narrative, helping to tell the story of space exploration in a way that’s engaging and accessible to everyone,” said Sean Collins, Johnson’s lead graphic designer. 

      The collaborative efforts of these teams ensure that NASA’s achievements are not just recorded but celebrated worldwide. 
      NASA team members participate in the National Collegiate Athletic Association Championship Game opening flag ceremonies on January 8, 2024, at NRG Stadium. NASA/Helen Arase Vargas NASA photographer Bill Stafford recalls a moment of awe when capturing the Moon juxtaposed with the U.S. flag above the Mission Control Center, a symbol of America’s space achievements. 

      “I feel a weight because my job is important,” he said. “I want people to look at my pictures and see what I was able to see.” 
      The Moon juxtaposed with the U.S. flag above the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Bill Stafford A T-38 formation flyover as NASA’s Space Launch System rocket sits on the launch pad at Kennedy Space Center in Florida.NASA/Josh Valcarcel Space Shuttle Endeavour is ferried by NASA’s Shuttle Carrier Aircraft over Ellington Field on September 20, 2012.NASA/Bill Stafford Neil Armstrong speaks at the Rotary National Award for Space Achievement dinner in Houston, Texas. NASA/Bill Stafford Expedition 1 crew members (from left) William Shepherd, Yuri Gudzenko and Sergei Krikalev train in the building 9 shuttle Crew Compartment Trainer on May 12, 2000. NASA/James Blair NASA T-38 aircraft are parked on the flight line at Ellington Field during sunrise, May 7, 2005.NASA/James Blair A NASA engineer installs VIPER’s (Volatiles Investigating Polar Exploration Rover) starboard radiator in Johnson’s clean room. NASA/Helen Arase Vargas Engineers work in the VIPER (Volatiles Investigating Polar Exploration Rover) clean room at Johnson Space Center. NASA/Helen Arase Vargas The cast members from the Apollo 13 movie in zero gravity aboard NASA’s KC-135 aircraft.NASA/Robert Markowitz NASA astronaut John Glenn on his second spaceflight as part of the STS-95 crew.NASA/Robert Markowitz  View the full article
    • By NASA
      6 Min Read NASA Trains Machine Learning Algorithm for Mars Sample Analysis
      The Mars Organic Molecule Analyzer, aboard the ExoMars mission's Rosalind Franklin rover, will employ a machine learning algorithm to speed up specimen analysis. Credits: ESA When the ESA (European Space Agency)-led Rosalind Franklin rover heads to Mars no earlier than 2028, a NASA machine learning algorithm gets its first chance to shine after more than a decade of data training in the lab. The Mars Organic Molecule Analyzer (MOMA), a mass spectrometer instrument aboard the rover, will analyze samples collected by a coring drill and send the results back to Earth, where they will be fed into the algorithm to identify organic compounds found in the samples. If any organic compounds are detected by the rover, the algorithm could greatly speed up the process of identifying them, saving scientists time as they decide the most efficient uses of the rover’s time on the Red Planet. When a robotic rover lands on another world, scientists have a limited amount of time to collect data from the troves of explorable material, because of short mission durations and the length of time to complete complex experiments.
      That’s why researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are investigating the use of machine learning to assist in the rapid analysis of data from rover samples and help scientists back on Earth strategize the most efficient use of a rover’s time on a planet.
      “This machine learning algorithm can help us by quickly filtering the data and pointing out which data are likely to be the most interesting or important for us to examine,” said Xiang “Shawn” Li, a mass spectrometry scientist in the Planetary Environments lab at NASA Goddard.
      The algorithm will first be put to the test with data from Mars, by operating on an Earth-bound computer using data collected by the Mars Organic Molecule Analyzer (MOMA) instrument.
      The analyzer is one of the main science instruments on the upcoming ExoMars mission Rosalind Franklin Rover, led by ESA (European Space Agency). The rover, which is scheduled to launch no earlier than 2028, seeks to determine if life ever existed on the Red Planet.
      Related: NASA, ESA to Land Europe’s Rover on Mars After Rosalind Franklin collects a sample and analyzes it with MOMA, data will be sent back to Earth, where scientists will use the findings to decide the best next course of action.
      “For example, if we measure a sample that shows signs of large, complex organic compounds mixed into particular minerals, we may want to do more analysis on that sample, or even recommend that the rover collect another sample with its coring drill,” Li said.
      Algorithm May Help Identify Chemical Composition Beneath Surface of Mars
      In artificial intelligence, machine learning is a way that computers learn from data — lots of data — to identify patterns and make decisions or draw conclusions.
      This automated process can be powerful when the patterns might not be obvious to human researchers looking at the same data, which is typical for large, complex data sets such as those involved in imaging and spectral analysis.
      In MOMA’s case, researchers have been collecting laboratory data for more than a decade, according to Victoria Da Poian, a data scientist at NASA Goddard who co-leads development of the machine learning algorithm. The scientists train the algorithm by feeding it examples of substances that may be found on Mars and labeling what they are. The algorithm will then use the MOMA data as input and output predictions of the chemical composition of the studied sample, based on its training.
      NASA data scientist Victoria Da Poian presents on the MOMA’s machine learning algorithm at the Supercomputing 2023 conference in Denver, Colorado.NASA/Donovan Mathias “The more we do to optimize the data analysis, the more information and time scientists will have to interpret the data,” Da Poian said. “This way, we can react quickly to results and plan next steps as if we are there with the rover, much faster than we previously would have.”
      The MOMA employs laser desorption to identify specimens, while preserving larger molecules that may be broken down by gas chromatography.
      Credit: NASA’s Goddard Space Flight Center/Conceptual Image Lab
      Download this video and related multimedia in HD formats Drilling Down for Signs of Past Life
      What makes the Rosalind Franklin rover unique — and what scientists hope will lead to new discoveries — is that it will be able to drill down about 6.6 feet (2 meters) into the surface of Mars. Previous rovers have only reached about 2.8 inches (7 centimeters) below the surface.
      “Organic materials on Mars’ surface are more likely to be destroyed by exposure to the radiation at the surface and cosmic rays that penetrate into the subsurface,” said Li, “but two meters of depth should be enough to shield most organic matter. MOMA therefore has the potential to detect preserved ancient organics, which would be an important step in looking for past life.”
      Future Explorations Across the Solar System Could be More Autonomous
      Searching for signs of life, past or present, on worlds beyond Earth is a major effort for NASA and the greater scientific community. Li and Da Poian see potential for their algorithm as an asset for future exploration of tantalizing targets like Saturn’s moons Titan and Enceladus, and Jupiter’s moon Europa.
      Li and Da Poian’s long-term goal is to achieve even more powerful “science autonomy,” where the mass spectrometer will analyze its own data and even help make operational decisions autonomously, dramatically increasing science and mission efficiency.
      This will be crucial as space exploration missions target more distant planetary bodies. Science autonomy would help prioritize data collection and communication, ultimately achieving much more science than currently possible on such remote missions.
      “The long-term dream is a highly autonomous mission,” said Da Poian. “For now, MOMA’s machine learning algorithm is a tool to help scientists on Earth more easily study these crucial data.”
      The MOMA project is led by the Max Planck Institute for Solar System Research (MPS) in Germany, with principal investigator Dr. Fred Goesmann. NASA Goddard developed and built the MOMA mass spectrometer subsystem, which will measure the molecular weights of chemical compounds in collected Martian samples.
      Development of the machine learning algorithm was funded by NASA Goddard’s Internal Research and Development program.
      By Matthew Kaufman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Aug 05, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Technology Artificial Intelligence (AI) ExoMars Goddard Space Flight Center Goddard Technology Mars Planetary Science The Solar System Explore More
      6 min read Here’s How AI Is Changing NASA’s Mars Rover Science
      Article 3 weeks ago 7 min read NASA’s Perseverance Rover Scientists Find Intriguing Mars Rock
      Article 2 weeks ago 5 min read NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa
      Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans…
      Article 3 weeks ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This visualization shows monthly global surface temperatures from 1880 to May 2024. The last 12 months (June 2023 through May 2024) hit record highs for each respective month. Download this visualization from NASA Goddard’s Scientific Visualization Studio: https://svsdev.gsfc.nasa.gov/5311NASA’s Scientific Visualization Studio May 2024 was the warmest May on the books, marking a full year of record-high monthly temperatures, NASA scientists found. Average global temperatures for the past 12 months hit record highs for each respective month – an unprecedented streak – according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York.
      “It’s clear we are facing a climate crisis,” said NASA Administrator Bill Nelson. “Communities across America—like Arizona, California, Nevada—and communities across the globe are feeling first-hand extreme heat in unprecedented numbers. NASA and the Biden-Harris Administration recognize the urgency of protecting our home planet. We are providing critical climate data to better lives and livelihoods, and benefit all humanity.”
      The run of record temperatures fits within a long-term warming trend driven by human activity — primarily greenhouse gas emissions. The trend has become evident over the past four decades, with the last 10 consecutive years being the warmest 10 since record-keeping began in the late 19th century. Before this streak of 12 straight months of record temperatures, the second longest streak lasted for seven months between 2015 and 2016.
      “It’s clear we are facing a climate crisis. Communities across America—like Arizona, California, Nevada—and communities across the globe are feeling first-hand extreme heat in unprecedented numbers.
      Bill Nelson
      NASA Administrator Bill Nelson
      “We’re experiencing more hot days, more hot months, more hot years,” said Kate Calvin, NASA’s chief scientist and senior climate advisor. “We know that these increases in temperature are driven by our greenhouse gas emissions and are impacting people and ecosystems around the world.”
      In NASA’s analysis, a temperature baseline is defined by several decades or more – typically 30 years. The average global temperature over the past 12 months was 2.34 degrees Fahrenheit (1.30 degrees Celsius) above the 20th century baseline (1951 to 1980). This is slightly over the 2.69 degree Fahrenheit (1.5 degree Celsius) level with respect to the late 19th century average.
      To calculate Earth’s global temperature, NASA scientists gather data from tens of thousands of meteorological stations on land, plus thousands of instruments on ships and buoys on the ocean surface. This raw data is analyzed using methods that account for the varied spacing of temperature stations around the globe and for urban heating effects that could skew the calculations.
      El Niño Subsiding, La Niña Arriving?
      Phenomena such as El Niño and La Niña, which alternately warm and cool the tropical Pacific Ocean, can contribute a small amount of variability in global temperatures from year to year. The strong El Niño that began in spring 2023 helped stoke last year’s extreme summer and fall heat.
      As of May 2024, scientists at the NOAA (National Oceanic and Atmospheric Administration) Climate Prediction Center projected a 49% chance of La Niña developing between June and August, and a 69% chance of it developing between July and September. By cooling a large swath of the tropical Pacific, a La Niña event could partially suppress average global temperatures this year.
      Dr. Kate Calvin, NASA’s Chief Scientist and Senior Climate Advisor, answers some of the top questions pertaining to these temperature records and our changing climate. NASA’s Goddard Space Flight Center/ Katie Jepson It’s hard to know whether 2024 will set another global heat record. Factors like volcanic eruptions and sun-blocking aerosol emissions can affect our climate in any given year. NASA missions are actively studying these influences, said Gavin Schmidt, director of GISS.
      “There are open questions that can impact our predictions over the next few years and decades, and we’re in evidence-gathering mode,” Schmidt said. “This year may well end up setting another global temperature record. Right now, it’s in line to be close to 2023.”
      Ocean Temperatures and Hurricanes

      Scientists are watching to see how ocean temperatures may influence this year’s hurricane season. Temperatures remained high as the 2024 hurricane and typhoon seasons got underway. Across the Northern Hemisphere, ocean temperatures for the January-April period were 2.12 degrees Fahrenheit (1.18 degrees Celsius) above average, according to NOAA. Despite the waning El Niño, temperatures at the sea surface and at deeper depths are still above average in many places, said Josh Willis, an oceanographer at NASA’s Jet Propulsion Laboratory in Southern California.

      Willis cited rising carbon dioxide emissions as the main driver of ocean warming. As much as 90% of the excess atmospheric heat in recent decades has been absorbed by the ocean, with much of that heat stored near the water surface.  
      “The ocean is the flywheel of our climate,” Willis said. “Since the ocean covers more than two-thirds of Earth, whatever sea surface temperatures are, the rest of the planet follows.”  
      La Niña years also can contribute to more active Atlantic hurricane seasons. That’s because La Niña conditions weaken westerly winds high in the atmosphere near the Americas, over the Caribbean Sea and tropical Atlantic Ocean. Wind shear – abrupt changes in wind speed and direction – can cut hurricanes down before they grow. La Niña effectively lifts this brake, allowing tropical storms to form and intensify unimpeded.
      NASA’s full dataset of global surface temperatures, as well as details of how NASA scientists conducted the analysis, are publicly available from GISS, a NASA laboratory managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. 
      About the Author
      Sally Younger
      Senior Science Writer
      Share
      Details
      Last Updated Jun 11, 2024 ContactSally YoungerLocationGoddard Institute for Space Studies Related Terms
      Earth Goddard Institute for Space Studies Goddard Space Flight Center Explore More
      2 min read North Carolina Volunteers Work Toward Cleaner Well Water
      When the ground floods during a storm, floodwaters wash bacteria and other contaminants into private…
      Article 19 hours ago 4 min read Hubble Finds Surprises Around a Star That Erupted 40 Years Ago
      Astronomers have used new data from NASA’s Hubble Space Telescope and the retired SOFIA (Stratospheric Observatory for Infrared Astronomy)…
      Article 20 hours ago 6 min read NASA Watches Mars Light Up During Epic Solar Storm
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Sea level rise is affecting coastal communities around the world, especially those like Honolulu, pictured, that are located on islands.NOAA Teacher at Sea Program, NOAA Ship HI’IALAKAI A long-term sea level dataset shows ocean surface heights continuing to rise at faster and faster rates over decades of observations.
      Global average sea level rose by about 0.3 inches (0.76 centimeters) from 2022 to 2023, a relatively large jump due mostly to a warming climate and the development of a strong El Niño. The total rise is equivalent to draining a quarter of Lake Superior into the ocean over the course of a year.
      This NASA-led analysis is based on a sea level dataset featuring more than 30 years of satellite observations, starting with the U.S.-French TOPEX/Poseidon mission, which launched in 1992. The Sentinel-6 Michael Freilich mission, which launched in November 2020, is the latest in the series of satellites that have contributed to this sea level record.
      The data shows that global average sea level has risen a total of about 4 inches (9.4 centimeters) since 1993. The rate of this increase has also accelerated, more than doubling from 0.07 inches (0.18 centimeters) per year in 1993 to the current rate of 0.17 inches (0.42 centimeters) per year.
      This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech “Current rates of acceleration mean that we are on track to add another 20 centimeters of global mean sea level by 2050, doubling the amount of change in the next three decades compared to the previous 100 years and increasing the frequency and impacts of floods across the world,” said Nadya Vinogradova Shiffer, director for the NASA sea level change team and the ocean physics program in Washington.
      Seasonal Effects
      Global sea level saw a significant jump from 2022 to 2023 due mainly to a switch between La Niña and El Niño conditions. A mild La Niña from 2021 to 2022 resulted in a lower-than-expected rise in sea level that year. A strong El Niño developed in 2023, helping to boost the average amount of rise in sea surface height.
      La Niña is characterized by cooler-than-normal ocean temperatures in the equatorial Pacific Ocean. El Niño involves warmer-than-average ocean temperatures in the equatorial Pacific. Both periodic climate phenomena affect patterns of rainfall and snowfall as well as sea levels around the world.
      “During La Niña, rain that normally falls in the ocean falls on the land instead, temporarily taking water out of the ocean and lowering sea levels,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “In El Niño years, a lot of the rain that normally falls on land ends up in the ocean, which raises sea levels temporarily.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This animation shows the rise in global mean sea level from 1993 to 2023 based on data from a series of five international satellites. The spike in sea level from 2022 to 2023 is mostly a consequence of climate change and the development of El Niño conditions in the Pacific Ocean. Credit: NASA’s Scientific Visualization Studio A Human Footprint
      Seasonal or periodic climate phenomena can affect global average sea level from year to year. But the underlying trend for more than three decades has been increasing ocean heights as a direct response to global warming due to the excessive heat trapped by greenhouse gases in Earth’s atmosphere.
      “Long-term datasets like this 30-year satellite record allow us to differentiate between short-term effects on sea level, like El Niño, and trends that let us know where sea level is heading,” said Ben Hamlington, lead for NASA’s sea level change team at JPL.
      These multidecadal observations wouldn’t be possible without ongoing international cooperation, as well as scientific and technical innovations by NASA and other space agencies. Specifically, radar altimeters have helped produce ever-more precise measurements of sea level around the world. To calculate ocean height, these instruments bounce microwave signals off the sea surface, recording the time the signal takes to travel from a satellite to Earth and back, as well as the strength of the return signal.
      The researchers also periodically cross-check those sea level measurements against data from other sources. These include tide gauges, as well as satellite measurements of factors like atmospheric water vapor and Earth’s gravity field that can affect the accuracy of sea level measurements. Using that information, the researchers recalibrated the 30-year dataset, resulting in updates to sea levels in some previous years. That includes a sea level rise increase of 0.08 inches (0.21 centimeters) from 2021 to 2022.
      When researchers combine space-based altimetry data of the oceans with more than a century of observations from surface-based sources, such as tide gauges, the information dramatically improves our understanding of how sea surface height is changing on a global scale. When these sea level measurements are combined with other information, including ocean temperature, ice loss, and land motion, scientists can decipher why and how seas are rising.
      Learn more about sea level and climate change:
      https://sealevel.nasa.gov/
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-031
      Share
      Details
      Last Updated Mar 21, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Sentinel-6 Michael Freilich Satellite TOPEX / Poseidon (ocean TOPography EXperiment) Explore More
      5 min read US, Germany Partnering on Mission to Track Earth’s Water Movement
      Article 2 days ago 5 min read NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact
      Article 2 days ago 3 min read Student-Built Robots Clash at Competition Supported by NASA-JPL
      Article 3 days ago View the full article
    • By NASA
      Operational modal analysis (OMA) techniques have been used to identify the modal characteristics of the Artemis I launch vehicle during the Dynamic Rollout Test (DRT) and Wet Dress Rehearsal (WDR) configuration prior to launch. Forces induced during rollout and on the launch pad are not directly measurable, thus necessitating a unique approach.

      NASA is developing the SLS to support lunar and deep space exploration. SLS is integrated inside the Vehicle Assembly Building (VAB) on the mobile launcher (ML), which supports the integrated SLS launch vehicle during transport to the pad through lift-off. The ML also provides the fuel, power, and data umbilicals running to the SLS and Orion Multi-Purpose Crew Vehicle (MPCV), as well as crew access to the MPCV crew module. The ML weighs ~10.6 million pounds and is over 380 feet tall. In the spring of 2022, the SLS was transported on the ML from the VAB to Launch Pad 39B (Figure 1) using the NASA crawler transporter (CT) to make this 4.2 mile trek, which takes ~8 hours. The CT alone weighs ~6.3 million pounds.
      Figure 1. Artemis I Rollout to Launch Pad 39B. Although the rollout environment produces relatively small launch vehicle structural loads in comparison to launch and ascent loads for most structures, the induced loads are fully representative of all loading across the entire vehicle, which is not feasible to replicate using localized shakers as was done in the Integrated Modal Test. As mentioned, forces induced during rollout and on the launch pad are not directly measurable, and OMA techniques were used to identify the modal characteristics of Artemis I in the DRT and WDR configurations. WDR, which typically includes vehicle fueling and other operations to demonstrate launch readiness, included several days of on-pad operations. Data collected for the WDR configuration, with partially filled core fuel tanks and without the CT under the ML, provided engineers another model configuration to check (Figure 2).
      Figure 2. Artemis I at Launch Pad 39B. Acquisition and processing the data from over 300 accelerometers located on Artemis I, ML, and CT was accomplished by a cross-program team of engineers and technicians from across the Agency, including from SLS, Exploration Ground Systems, and the NESC. Using analytical techniques developed from previous rollout tests combined with new data-processing methodologies, the team processed data from preselected CT speed increments during rollout and on-pad during WDR. By making the necessary modifications to the integrated models to match both the DRT and WDR configurations, the team was able to use those results to help make sense of what was being seen in the test data. This proved to be required for OMA testing on this structure, given the type of complex excitation that was being observed.

      For information, contact Dexter Johnson dexter.johnson@nasa.gov and Teresa Kinney teresa.l.kinney@nasa.gov.
      View the full article
  • Check out these Videos

×
×
  • Create New...