Members Can Post Anonymously On This Site
Failure Analysis
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Communities in coastal areas such as Florida, shown in this 1992 NASA image, are vulnerable to the effects of sea level rise, including high-tide flooding. A new agency-led analysis found a higher-than-expected rate of sea level rise in 2024, which was also the hottest year on record.NASA Last year’s increase was due to an unusual amount of ocean warming, combined with meltwater from land-based ice such as glaciers.
Global sea level rose faster than expected in 2024, mostly because of ocean water expanding as it warms, or thermal expansion. According to a NASA-led analysis, last year’s rate of rise was 0.23 inches (0.59 centimeters) per year, compared to the expected rate of 0.17 inches (0.43 centimeters) per year.
“The rise we saw in 2024 was higher than we expected,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Every year is a little bit different, but what’s clear is that the ocean continues to rise, and the rate of rise is getting faster and faster.”
This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which has more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech In recent years, about two-thirds of sea level rise was from the addition of water from land into the ocean by melting ice sheets and glaciers. About a third came from thermal expansion of seawater. But in 2024, those contributions flipped, with two-thirds of sea level rise coming from thermal expansion.
“With 2024 as the warmest year on record, Earth’s expanding oceans are following suit, reaching their highest levels in three decades,” said Nadya Vinogradova Shiffer, head of physical oceanography programs and the Integrated Earth System Observatory at NASA Headquarters in Washington.
Since the satellite record of ocean height began in 1993, the rate of annual sea level rise has more than doubled. In total, global sea level has gone up by 4 inches (10 centimeters) since 1993.
This long-term record is made possible by an uninterrupted series of ocean-observing satellites starting with TOPEX/Poseidon in 1992. The current ocean-observing satellite in that series, Sentinel-6 Michael Freilich, launched in 2020 and is one of an identical pair of spacecraft that will carry this sea level dataset into its fourth decade. Its twin, the upcoming Sentinel-6B satellite, will continue to measure sea surface height down to a few centimeters for about 90% of the world’s oceans.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This animation shows the rise in global mean sea level from 1993 to 2024 based on da-ta from five international satellites. The expansion of water as it warms was responsible for the majority of the higher-than-expected rate of rise in 2024.NASA’s Scientific Visualization Studio Mixing It Up
There are several ways in which heat makes its way into the ocean, resulting in the thermal expansion of water. Normally, seawater arranges itself into layers determined by water temperature and density. Warmer water floats on top of and is lighter than cooler water, which is denser. In most places, heat from the surface moves very slowly through these layers down into the deep ocean.
But extremely windy areas of the ocean can agitate the layers enough to result in vertical mixing. Very large currents, like those found in the Southern Ocean, can tilt ocean layers, allowing surface waters to more easily slip down deep.
The massive movement of water during El Niño — in which a large pool of warm water normally located in the western Pacific Ocean sloshes over to the central and eastern Pacific — can also result in vertical movement of heat within the ocean.
Learn more about sea level:
https://sealevel.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-036
Share
Details
Last Updated Mar 13, 2025 Related Terms
Sentinel-6 Michael Freilich Satellite Climate Science Jet Propulsion Laboratory Oceans Explore More
6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
Article 6 days ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 1 week ago 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Download PDF: Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
Energy modulators (EM), also known as energy absorbers, are safety-critical components that are used to control shocks and impulses in a load path. EMs are textile devices typically manufactured out of nylon, Kevlar® and other materials, and control loads by breaking rows of stitches that bind a strong base webbing together as shown in Figure 1. A familiar EM application is a fall-protection harness used by workers to prevent injury from shock loads when the harness arrests a fall. EMs are also widely used in parachute systems to control shock loads experienced during the various stages of parachute system deployment.
Random forest is an innovative algorithm for data classification used in statistics and machine learning. It is an easy to use and highly flexible ensemble learning method. The random forest algorithm is capable of modeling both categorical and continuous data and can handle large datasets, making it applicable in many situations. It also makes it easy to evaluate the relative importance of variables and maintains accuracy even when a dataset has missing values.
Random forests model the relationship between a response variable and a set of predictor or independent variables by creating a collection of decision trees. Each decision tree is built from a random sample of the data. The individual trees are then combined through methods such as averaging or voting to determine the final prediction (Figure 2). A decision tree is a non-parametric supervised learning algorithm that partitions the data using a series of branching binary decisions. Decision trees inherently identify key features of the data and provide a ranking of the contribution of each feature based on when it becomes relevant. This capability can be used to determine the relative importance of the input variables (Figure 3). Decision trees are useful for exploring relationships but can have poor accuracy unless they are combined into random forests or other tree-based models.
The performance of a random forest can be evaluated using out-of-bag error and cross-validation techniques. Random forests often use random sampling with replacement from the original dataset to create each decision tree. This is also known as bootstrap sampling and forms a bootstrap forest. The data included in the bootstrap sample are referred to as in-the-bag, while the data not selected are out-of-bag. Since the out-of-bag data were not used to generate the decision tree, they can be used as an internal measure of the accuracy of the model. Cross-validation can be used to assess how well the results of a random forest model will generalize to an independent dataset. In this approach, the data are split into a training dataset used to generate the decision trees and build the model and a validation dataset used to evaluate the model’s performance. Evaluating the model on the independent validation dataset provides an estimate of how accurately the model will perform in practice and helps avoid problems such as overfitting or sampling bias. A good model performs well on
both the training data and the validation data.
The complex nature of the EM system made it difficult for the team to identify how various parameters influenced EM behavior. A bootstrap forest analysis was applied to the test dataset and was able to identify five key variables associated with higher probability of damage and/or anomalous behavior. The identified key variables provided a basis for further testing and redesign of the EM system. These results also provided essential insight to the investigation and aided in development of flight rationale for future use cases.
For information, contact Dr. Sara R. Wilson. sara.r.wilson@nasa.gov
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.Credit: NASA Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.
NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.
“You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”
After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.
The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.
“If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”
Explore More
2 min read Controlled Propulsion for Gentle Landings
A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
Article 40 mins ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation
NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space…
Article 21 hours ago 4 min read Lunar Autonomy Mobility Pathfinder: An OTPS-Sponsored Workshop
Article 1 day ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.