Jump to content

Repair, Refurbishment, and Modification


NASA

Recommended Posts

  • Publishers

Repair, Refurbishment, and Modification

Components can be refurbished as a cost effective alternative to the cost of new equipment.
WSTF Staff

Components can be refurbished as a cost effective alternative to the cost of new equipment.

Credits: NASA WSTF

Our engineers refurbish, repair, and redesign fluid components such as check valves, relief valves, solenoid valves, and manual valves ensuring relief valves and other components are operating within manufacturer’s specifications and comply with the requirements of

Facilities and Certifications
Component Services is an approved “VR” certified facility holding the National Board Inspection Code (NBIC) Certificate of Authorization and “VR” Symbol Stamp for the repair of pressure relief valves. 
Our team is also certified to manufacture flight hardware by NASA and the International Space Station (ISS) Program.

Repair and Refurbishment
Repair and refurbishment is a cost effective alternative to replacement and our highly skilled team disassembles, inspects, and precision cleans each item received. We ensure the parts being used for repair and replacement are from the original manufacturer, or from a vendor approved by the National Board verifying replacement parts meet original manufacturer specifications. Spares and replacements can be manufactured by our in-house NASA certified Machining and Fabrication workforce to replace parts that are no longer commercially available.

Modification
Equipment can be modified to work safely in your pressure system or in specific media such as oxidizer, oxygen service, fuels, and propellants. Guided by the knowledge gained from 40 years or research and testing by our Oxygen System and Propellants and Aerospace Fluids engineers, our team can modify equipment with recommended parts to operated safely and avoid costly mistakes created by using the wrong components.

Last Updated: Aug 6, 2017

Editor: Judy Corbett

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Repair Kit for NASA’s NICER Mission Heading to Space Station
      NASA will deliver a patch kit for NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, on the agency’s Northrop Grumman 21st commercial resupply mission. Astronauts will conduct a spacewalk to complete the repair.
      Located near the space station’s starboard solar array, NICER was damaged in May 2023. The mission team delivered the patch kit to NASA’s Johnson Space Center in Houston in May 2024 so it could be prepped and packed for the upcoming resupply mission.
      “It’s incredible that in just one year, we were able to diagnose the problem and then design, build, test, and deliver a solution,” said Steve Kenyon, NICER’s mechanical lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re so excited to see the patches installed during a future spacewalk, return to a more regular operating schedule, and keep doing groundbreaking science.”
      This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the Poisk Mini-Research Module 2 on the space station in July 2023. Photos like this one helped the mission team map the damage to the thermal shields over NICER’s X-ray concentrators. NASA/Sultan Alneyadi  Some of NICER’s damaged thermal shields (circled) are visible in this photograph. NASA/Sultan Alneyadi 




      From its perch on the station, the washing machine-sized NICER studies the X-ray sky. It has precisely measured superdense stellar remnants called neutron stars, which contain the densest matter scientists can directly observe. It has also investigated mysterious fast radio bursts, observed comets in our solar system, and collected data about Earth’s upper atmosphere.
      But in May 2023, NICER developed a “light leak,” where unwanted sunlight began entering the telescope.
      Photos taken aboard the station revealed several areas of damage to NICER’s thermal shields. The shields are 500 times thinner than a human hair and filter out infrared, ultraviolet, and visible light while allowing X-rays to pass through. They cover each of NICER’s 56 X-ray concentrators, sets of 24 nested circular mirrors designed to skip X-rays into corresponding detectors. A sunshade tops each concentrator and shield assembly, with a slight gap in between. The sunshades are segmented by six internal struts, resembling a sliced pie.
      The largest damage to the shields is around the size of a typical U.S. postage stamp. The other areas are closer in size to pinheads. During the station’s daytime, the damage allows sunlight to reach the detectors, saturating sensors and interfering with NICER’s measurements. The mission team altered their daytime observing strategy to mitigate the effect. The damage does not impact nighttime observations.
      “NICER wasn’t designed to be serviced or repaired,” said Keith Gendreau, the mission’s principal investigator at Goddard. “It was installed robotically, and we operate it remotely. When we decided to investigate the possibility of patching the largest damaged areas on the thermal shields, we had to come up with a method that would use the existing parts of the telescope and station toolkits. We couldn’t have done it without all the support and collaboration from our colleagues at Johnson and throughout the space station program.”
      NICER’s patches are made from aluminum and anodized, or coated, black. Each is about 2 inches tall. “LCK” indicates the lock position for a tab at the bottom that will hold the patch in place. NASA is sending 12 of these patches to the International Space Station. During a spacewalk, astronauts will insert five into sunshades on the telescope to cover the most significant areas of damage. NASA/Sophia Roberts  NICER’s patches will be inserted into its sunshades, as shown here. The small tab that locks the patch into place is visible beneath it. The carbon composite sunshades cover each of NICER’s 56 X-ray concentrators. Each sunshade is supported by three gold-colored fiberglass mounting feet. NASA/Sophia Roberts NICER’s thermal shields — the silver film shown here — cover each of the mission’s 56 X-ray concentrators. They block ultraviolet, infrared, and visible light while allowing X-rays to pass through to the mirrors underneath. Each shield is only about 160 nanometers thick, or 500 times thinner than a human hair. The fragile shield is supported by a stainless-steel frame which consists of a pattern of 1/8 inch (3 millimeter) squares in each of the wedges. NASA/Sophia Roberts  NICER has 56 individual X-ray focusing elements, called concentrators, that each contain 24 nested mirrors. Every concentrator delivers X-rays to its own detector. The concentrator shown here is tilted on its side, so the camera is looking into the nested mirrors. X-rays are high-energy light, so they can pass through the atoms of telescope mirrors like those for NASA’s Hubble and James Webb space telescopes. Instead, X-ray observatories use grazing incidence mirrors, where the surfaces are turned on their sides. X-rays skip across their surfaces and into detectors. NASA/Sophia Roberts




      The solution, in the end, was simple. The team designed patches, each shaped like a piece of pie, that will slide into the sunshades. A tab at the bottom of each patch will turn into the space between the bottom of the sunshade and the top of the thermal shield, keeping it in place.
      Astronauts will install five patches during the spacewalk. They’ll cover the most significant areas of damage and block the sunlight affecting NICER’s X-ray measurements.
      The repair kit contains 12 patches in total, allowing for spares if needed. Astronauts will carry the patches in a caddy, a rectangular frame containing two spare sunshades with the patches held inside.
      “NICER will be the first X-ray telescope in orbit to be serviced by astronauts and only the fourth science observatory to be repaired overall — joining the ranks of missions like NASA’s Hubble Space Telescope,” said Charles Baker, the NICER project systems engineer at Goddard. “It’s been amazing to watch the patch kit come together over the last year. NICER has taught us so many wonderful things about the cosmos, and we’re really looking forward to this next step of its journey.”
      The NICER caddy is an aluminum box containing two of the mission’s spare sunshades, which are attached to the bottom. Inside the sunshades, 12 patches are locked into place. Astronauts will take the complete caddy assembly with them during a future spacewalk to address damage to NICER’s thermal shields. They’ll insert five of the patches over the largest areas of damage, which will allow the mission to return to a normal operating status during the station’s daytime. The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

      Download high-resolution NICER images and videos

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jul 30, 2024 Related Terms
      Astrophysics Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
    • By NASA
      NASA has awarded a task order modification to the Aerospace Testing and Facilities Operations and Maintenance (ATOM-5) contract to Jacobs Technology Inc., of Tullahoma, Tennessee, to provide the agency’s Ames Research Center in California’s Silicon Valley, with an upgrade to the center’s Unitary Plan Wind Tunnel main drive speed control variable frequency drive. 
      The ATOM-5 award is a cost-plus fixed-fee indefinite-delivery indefinite-quantity contract that supports several experiments in the ground-based aerospace facilities at Ames, including wind tunnels, high-enthalpy arc jet facilities, and the Sensor and Thermal Protection System Advanced Research Lab. The task order award value is $41 million with a period of performance through Oct. 1, 2027.
      The project will upgrade the electrical system of its wind tunnel to improve the efficiency and capability of the main drive motors. These motors are required to operate the 11-by-11-foot Transonic Wind Tunnel and 9-by-7-foot Supersonic Wind Tunnel facilities at Ames. The upgrade is expected to result in improved facility reliability, reductions in annual power and water usage, reduction of maintenance requirements, and elimination of environmental hazards allowing the facility to continue to support NASA missions and programs into the future.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov

      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      To assure items function as designed, piece parts are verified to manufacturer’s tolerance.Credits: NASA WSTF Holding the National Board Inspection Code (NBIC) Certificate of Authorization and “VR” Symbol Stamp for the repair of pressure relief valves, our Valve Repair Facility ensures pressure relief valves are operating within the manufacturer’s specifications and to the customer’s expectations.
      Using gaseous nitrogen, we are capable of verifying flow capabilities of pressure relief valves up to 1000 scfm, and pressures up to 2800 psig. We also ensures replacement parts operate per the original manufacturer’s specifications and maintain traceability for parts and testing on code and non-code applications. Assembly and testing of the components is performed in a ISO Class 5 (Federal Standard Class 100) clean room making us the only known clean flow test facility for relief valves in North America.
      All inspection measurement and test equipment used to support our Valve Repair Facility is calibrated in-house and is traceable to National Institute of Standards and Technology (NIST) or other internationally agreeable intrinsic standards.
      Last Updated: Aug 6, 2017
      Editor: Judy Corbett
      View the full article
    • By NASA
      NASA Awards Institutional, Maintenance, Operations, and Repair ContractView the full article
  • Check out these Videos

×
×
  • Create New...