Members Can Post Anonymously On This Site
Certified Valve Repair Facility
-
Similar Topics
-
By NASA
At the edge of Las Cruces, New Mexico, surrounded by miles of sunbaked earth, NASA’s White Sands Test Facility (WSTF) is quietly shaping the future. There is no flash, no fanfare — the self-contained facility operates as it has since 1962, humbly and in relative obscurity.
Yet as New Mexico’s space industry skyrockets amid intensifying commercial spaceflight efforts across the state, WSTF feels a new urgency to connect with the community. With the facility’s latest Test and Evaluation Support Team (TEST3) contract now in its third year, Program Manager Michelle Meerscheidt is determined to make a mark.
“I think it’s very important we increase our public presence,” Meerscheidt said. “We are a significant contributor to NASA’s mission and our country’s aspirations for furthering space exploration.”
In September, TEST3 leadership joined forces with the City of Las Cruces to support the sixth annual Las Cruces Space Festival, a two-weekend celebration of the region’s rich relationship with the aerospace industry.
The Test and Evaluation Support Team (TEST3) team — Human Resources Manager Kristina Garcia (left), Program Manager Michelle Meerscheidt, and Deputy Program Manager/Business Manager Karen Lucht — prepares to meet with visitors at the Las Cruces Space Festival Astronomy & Industry Night on Sept. 13, 2024, in Las Cruces, New Mexico. NASA/Anthony Luis Quiterio Alongside WSTF, festival director Alice Carruth is working to open a world that many believe is off limits and others don’t know exists.
“Unless you’re driving over the mountains regularly and seeing the sign that says, ‘The Birthplace of the U.S. Space and Missile Program,’ you don’t tend to know what’s going on in your backyard,” Carruth said.
“The whole premise of the Space Festival is to make people understand what’s going on in their community, to encourage people to think about careers in the space industry, and to inspire the next generation.”
A featured speaker at the festival’s New Mexico State University Astronomy & Industry Night, Meerscheidt had the chance to do just that.
“It’s fun to see a lot of young kids that are wide-eyed and excited,” Meerscheidt said. “It’s nice to be able to encourage them to pursue their dreams.”
Among those wide-eyed festivalgoers was 6-year-old Camilla Medina-Bond, who was confident in her vision for the future.
“I want to be an astronaut when I grow up,” she said. “I want to visit the Moon.”
As for the details of her lunar mission, Medina-Bond’s plan is simple: “Just going to see what’s on it.” She has plenty of time to figure out the specifics — after all, giant leaps start with small steps. According to Meerscheidt, the aspiring astronaut has already taken the first and most critical step.
“That’s what NASA is all about,” Meerscheidt said. “Explore, be inquisitive. Open your mind, open your imagination, and go for it.”
Left: Camilla Medina-Bond, age 6, proudly shows off her foam stomp rocket and NASA White Sands Test Facility baseball cap during the Las Cruces Space Festival’s Astronomy & Industry Night on the New Mexico State University campus. Right: Medina-Bond immerses herself in another world as she operates a virtual reality headset. NASA/Anthony Luis Quiterio Medina-Bond’s aspiration is shared by many young dreamers. A 2024 global study by longtime NASA partner, the LEGO Group, found 77% of kids ages 4-14 want to travel to space.
Carruth acknowledged that keeping the attention of today’s always-scrolling, trend-driven generation is not easy, and that children’s fascination with space often wanes as they age.
“If you look at the statistics, space tends to be really cool until they get to middle school level, and then space isn’t cool anymore — not because it’s not cool, but because it then becomes inaccessible to a lot of students,” she said.
Still, Carruth is prepared to navigate the challenge.
“I want kids to understand that space is for everybody,” Carruth said. “I also want their parents and grandparents to understand why space is important and that this is a feasible career.”
Oscar Castrejon, who attended the festival with his 12-year-old son, Oscar Jr., is on his own mission to nurture that understanding. “I’ve learned early kids need to develop their own passions, but if they say ‘hey, I like this, I’m interested in it,’ then I’ll take them to it,” Castrejon said. “If their eyes get opened, if their imagination gets sparked, you never know — you could be looking at the next NASA scientist.”
Oscar Castrejon and his son Oscar Jr., age 12, stop by the White Sands TEST3 booth. Anthony Luis Quiterio WSTF TEST3 Deputy Program Manager and Business Manager Karen Lucht shares Castrejon’s philosophy, emphasizing the importance of authenticity.
“Speak[ing] to who you are as a person will ultimately lead to who you will become as a professional,” she said.
A remote test site, WSTF has its own ecosystem which Lucht compares to a “small city.” Among its residents are scientists and engineers, but also welders, writers, firefighters, and photographers — to name a few.
“White Sands offers endless opportunities for everybody,” Lucht said. “Every career has a path here.”
Lucht’s own journey illustrates the infinite potential that arises in diverse spaces like WSTF.
“I came from a town of less than a thousand people, and I never dreamt that I would work for NASA,” she said. “As someone who was told many times that I would never make it to my position, I look back on my career and realize there are no restraints. You really can do anything you want to do.”
For those wanting to join the ranks at WSTF, there is one important requirement: they must see themselves as stardust, a vital element in a grand cosmic plan.
“We’re looking for people who have the right perspective, the desire to learn and contribute to something bigger than themselves,” Lucht said.
At WSTF — a place where the stars feel close enough to touch — the sky is not the limit, it is only the beginning.
View the full article
-
By NASA
Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
NASA Johnson Invites Proposals to Lease Vibration Test Facility
NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
“This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease.
As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
Learn more about NASA Johnson’s efforts to collaborate with industry partners:
https://www.nasa.gov/johnson/frontdoor
-end-
Kelly Humphries
Johnson Space Center, Houston
281-483-5111
kelly.o.humphries@nasa.gov
View the full article
-
By NASA
Not all heroes wear capes (or blue flight suits). At Johnson Space Center in Houston, the heroes might train their colleagues how to safely respond and evacuate their office in an emergency. They might investigate office accidents and remove potential hazards. Or they might help fix a leaky bathroom sink or a broken coffee maker.
Those heroes are approximately 135 on-site facility managers who ensure the safety and health of every building and its occupants.
Established in 2009, the Facility Manager program encompasses buildings at Johnson Space Center, Sonny Carter Training Facility, and Ellington Field. Each building has a primary Facility Manager and an alternate. These individuals develop emergency action plans and serve as facility fire wardens. They post safety alerts, notices of renovation and construction work, and share information about impending interruptions to building access or utilities. They also coordinate between building occupants, safety personnel, facility operations, and emergency responders as needed.
“We are a relatively close-knit community and rely on each other for assistance and advice, especially from the veteran facility managers,” said Vanessa Jordan, the lead facility manager for the entire Johnson site. Her role, and that of Alternate Lead Facility Manager Darrell Palmer, is to establish policies and procedures for the Facility Manager program, ensuring that all applicable safety and health regulations are disseminated and enforced site wide.
Johnson Space Center Lead Facility Manager Vanessa Jordan (left) and Alternate Lead Facility Manager Darrell Palmer. “We are responsible for advising the facility managers on new and current policies and regulations relating to the safety and security of the buildings and their occupants,” Jordan explained. “We also inform them of changes in policies or procedures and happenings around the center that affect the buildings and occupants, such as road closures or hurricanes.” Jordan and Palmer oversee Facility Manager training, as well. They provide bi-annual training for new facility managers and periodic forums with subject matter experts on topics relevant to the team’s responsibilities.
“We are available to address any questions or concerns the facility managers may have regarding their role, buildings, or occupants,” she said. “We are the liaison and advocate for them with their organizations, my organization (which controls the program), the center, and our stakeholders.”
Jordan is also a facility engineer in the Center Operations Directorate’s Facilities Management and Operations Division. She joined Johnson’s team in 2008 after working for four years at NASA Headquarters in Washington, D.C. She served as Johnson’s facility manager coordinator for seven years before becoming the lead in 2019.
“I enjoy helping, meeting people, and developing relationships,” she said. “Even though I do a lot of routine work, there is something new to experience, deal with, or learn every day.”
Helping and connecting with others is what Angel Olmedo enjoys most about being a facility manager. “There’s no greater sense of purpose than being the person people rely on to find the help or solutions they need to finish their day strong and productive,” he said. “I’ve learned new skills and had a chance to meet and interact with a lot more people than I did before.”
Angel Olmedo Olmedo has worked at Johnson for nearly five years on the Human Space Flight Technical Integration Contract. In the spring of 2024, he was offered the opportunity to become the facility manager for buildings 4 south and 4 north, and the alternate facility manager for building 17. “During my first few years working here at Johnson, I enjoyed helping people get solutions to their technical problems – be they application related, access issues, or credentials,” he said. “I found that in becoming a facility manager I can continue to do something similar in a whole new way.”
Sid Dickerson has been the prime facility manager for building 17 and alternate for buildings 4 south and 4 north since November 2022. An IT specialist and property custodian at Johnson for more than 30 years, Dickerson takes pride in resolving issues quickly and efficiently and strives to maintain excellent customer feedback. “I want to be the best facility manager for my employer and customers as I help the facility achieve maintenance, cleaning, health and safety and scheduling goals,” he said. He added that working with a team of engineers, IT specialists, and maintenance staff to modernize the building 17 elevators was one of his favorite experiences to date.
Siegfried DickersonNASA/Robert Markowitz Michael Meadows – facility manager for buildings 10, 9 south, and 260 – was inspired to join the Johnson team while delivering newspapers onsite. An Alvin Community College student at the time, Meadows noticed a facility manager plaque on the wall of Johnson’s External Relations Office. “I knew that with hard work and dedication, I would one day become a Johnson employee and support flight and see my photo on that wall!”
Meadows began working at Johnson in 1999 and has been a facility manager for 23 years. He received a Silver Snoopy Award in May 2011 in recognition of the support he provided to the International Space Station Program as the manager for Johnson’s manufacturing facilities.
Michael MeadowsNASA/Robert Markowitz Some Johnson team members are hired specifically for a facility manager position. Others may volunteer or be appointed to the role by their organization’s management. Regardless of how they became a facility manager, each person must complete an initial and a refresher training covering topics such as hazard identification and mitigation, energy conservation, security, and legal considerations. Additional training may be required depending on building assignments. Once fully trained, facility managers may stay in that role as long as they work at Johnson.
The most rewarding part of being a facility manager, said Meadows, is “the feeling you get when you keep up with the facility and make that a great home for all the occupants every day.”
Curious about all of the roles available at NASA? Visit our Careers site to explore open opportunities and find your place with us!
View the full article
-
By NASA
4 min read
Repair Kit for NASA’s NICER Mission Heading to Space Station
NASA will deliver a patch kit for NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, on the agency’s Northrop Grumman 21st commercial resupply mission. Astronauts will conduct a spacewalk to complete the repair.
Located near the space station’s starboard solar array, NICER was damaged in May 2023. The mission team delivered the patch kit to NASA’s Johnson Space Center in Houston in May 2024 so it could be prepped and packed for the upcoming resupply mission.
“It’s incredible that in just one year, we were able to diagnose the problem and then design, build, test, and deliver a solution,” said Steve Kenyon, NICER’s mechanical lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re so excited to see the patches installed during a future spacewalk, return to a more regular operating schedule, and keep doing groundbreaking science.”
This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the Poisk Mini-Research Module 2 on the space station in July 2023. Photos like this one helped the mission team map the damage to the thermal shields over NICER’s X-ray concentrators. NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph. NASA/Sultan Alneyadi
From its perch on the station, the washing machine-sized NICER studies the X-ray sky. It has precisely measured superdense stellar remnants called neutron stars, which contain the densest matter scientists can directly observe. It has also investigated mysterious fast radio bursts, observed comets in our solar system, and collected data about Earth’s upper atmosphere.
But in May 2023, NICER developed a “light leak,” where unwanted sunlight began entering the telescope.
Photos taken aboard the station revealed several areas of damage to NICER’s thermal shields. The shields are 500 times thinner than a human hair and filter out infrared, ultraviolet, and visible light while allowing X-rays to pass through. They cover each of NICER’s 56 X-ray concentrators, sets of 24 nested circular mirrors designed to skip X-rays into corresponding detectors. A sunshade tops each concentrator and shield assembly, with a slight gap in between. The sunshades are segmented by six internal struts, resembling a sliced pie.
The largest damage to the shields is around the size of a typical U.S. postage stamp. The other areas are closer in size to pinheads. During the station’s daytime, the damage allows sunlight to reach the detectors, saturating sensors and interfering with NICER’s measurements. The mission team altered their daytime observing strategy to mitigate the effect. The damage does not impact nighttime observations.
“NICER wasn’t designed to be serviced or repaired,” said Keith Gendreau, the mission’s principal investigator at Goddard. “It was installed robotically, and we operate it remotely. When we decided to investigate the possibility of patching the largest damaged areas on the thermal shields, we had to come up with a method that would use the existing parts of the telescope and station toolkits. We couldn’t have done it without all the support and collaboration from our colleagues at Johnson and throughout the space station program.”
NICER’s patches are made from aluminum and anodized, or coated, black. Each is about 2 inches tall. “LCK” indicates the lock position for a tab at the bottom that will hold the patch in place. NASA is sending 12 of these patches to the International Space Station. During a spacewalk, astronauts will insert five into sunshades on the telescope to cover the most significant areas of damage. NASA/Sophia Roberts NICER’s patches will be inserted into its sunshades, as shown here. The small tab that locks the patch into place is visible beneath it. The carbon composite sunshades cover each of NICER’s 56 X-ray concentrators. Each sunshade is supported by three gold-colored fiberglass mounting feet. NASA/Sophia Roberts NICER’s thermal shields — the silver film shown here — cover each of the mission’s 56 X-ray concentrators. They block ultraviolet, infrared, and visible light while allowing X-rays to pass through to the mirrors underneath. Each shield is only about 160 nanometers thick, or 500 times thinner than a human hair. The fragile shield is supported by a stainless-steel frame which consists of a pattern of 1/8 inch (3 millimeter) squares in each of the wedges. NASA/Sophia Roberts NICER has 56 individual X-ray focusing elements, called concentrators, that each contain 24 nested mirrors. Every concentrator delivers X-rays to its own detector. The concentrator shown here is tilted on its side, so the camera is looking into the nested mirrors. X-rays are high-energy light, so they can pass through the atoms of telescope mirrors like those for NASA’s Hubble and James Webb space telescopes. Instead, X-ray observatories use grazing incidence mirrors, where the surfaces are turned on their sides. X-rays skip across their surfaces and into detectors. NASA/Sophia Roberts
The solution, in the end, was simple. The team designed patches, each shaped like a piece of pie, that will slide into the sunshades. A tab at the bottom of each patch will turn into the space between the bottom of the sunshade and the top of the thermal shield, keeping it in place.
Astronauts will install five patches during the spacewalk. They’ll cover the most significant areas of damage and block the sunlight affecting NICER’s X-ray measurements.
The repair kit contains 12 patches in total, allowing for spares if needed. Astronauts will carry the patches in a caddy, a rectangular frame containing two spare sunshades with the patches held inside.
“NICER will be the first X-ray telescope in orbit to be serviced by astronauts and only the fourth science observatory to be repaired overall — joining the ranks of missions like NASA’s Hubble Space Telescope,” said Charles Baker, the NICER project systems engineer at Goddard. “It’s been amazing to watch the patch kit come together over the last year. NICER has taught us so many wonderful things about the cosmos, and we’re really looking forward to this next step of its journey.”
The NICER caddy is an aluminum box containing two of the mission’s spare sunshades, which are attached to the bottom. Inside the sunshades, 12 patches are locked into place. Astronauts will take the complete caddy assembly with them during a future spacewalk to address damage to NICER’s thermal shields. They’ll insert five of the patches over the largest areas of damage, which will allow the mission to return to a normal operating status during the station’s daytime. The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.
Download high-resolution NICER images and videos
By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jul 30, 2024 Related Terms
Astrophysics Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
-
By NASA
Credits: NASA NASA has selected the University of Hawaii in Honolulu to maintain and operate the agency’s Infrared Telescope Facility (IRTF) on Mauna Kea in Hilo, Hawaii.
The Management and Operations of NASA’s IRTF is a hybrid firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. The contract has a maximum potential value of approximately $85.5 million, with a base period of performance from Monday, July 1 to June 30, 2025. Nine optional periods, if exercised, would extend the contract through Dec. 31, 2033.
Under this contract, the University of Hawaii will provide maintenance and operation services for NASA at the telescope facility. The university will also develop and implement an operations strategy so that the facility can be used by the scientific community through peer-reviewed competition to assist NASA in achieving its goals in scientific discovery, mission support, and planetary defense.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Share
Details
Last Updated Jun 28, 2024 LocationNASA Headquarters Related Terms
NASA Centers & Facilities Science & Research View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.