Jump to content

Environmental Management


NASA

Recommended Posts

  • Publishers

We take an active role in limiting our impacts on the environment and being responsible for the environmental quality of our community. Management support and grassroots efforts have helped to educate employees about environmental concerns, encourage our site’s involvement in sustainability activities, and embrace and implement employee ideas.

This support has led to a facility-wide culture of environmental awareness and sustainability that reaches across our site. Waste minimization projects, innovative technologies, sustainable acquisition, recycling activities, and other “green” initiatives have become routine site procedures.

env.jpg?w=1041

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Urban air mobility means a safe and efficient system for vehicles, piloted or not, to move passengers and cargo within a city.NASA As the aviation industry evolves, new air vehicles and operators are entering the airspace. NASA is working to ensure these new diverse set of operations can be safely integrated into the current airspace. The agency is researching how traditional and emerging aircraft operations can efficiently operate in a shared airspace.
      NASA’s Air Traffic Management-eXploration (ATM-X) project is a holistic approach to advancing a digital aviation ecosystem through research, development and testing. To accommodate the growing complexity and scale of new operations in Advanced Air Mobility (AAM), ATM-X leverages technologies that contribute to transforming the national airspace, improving airspace access, and making operations safer and more efficient for all users.
      ATM-X fosters access to data by enhancing the availability of digital information and predictive services – including flight traffic predictions – for airspace operations.
      ATM-X works closely with the Federal Aviation Administration (FAA), commercial partners, industry experts, and stakeholders in evaluating the sustainable impacts of emerging mobility solutions. ATM-X is conducting research to augment current key stakeholders that enable safe operations today such as pilots and air traffic controllers. Through these cooperations, ATM-X researches and validates technological advances in computing, communications, and increasingly automated technologies to support the continued evolution of aviation operations.
      ATM-X supports the modernization of today’s air transportation system through a diverse portfolio of core capabilities, which include remotely supervised missions up through high-altitude operations. The four research subprojects under ATM-X work collaboratively to enable a robust transformation of the National Airspace System (NAS).
      NASA/Maria Werries Unmanned Aircraft System Traffic Management Beyond-Visual-Line-of Sight (UTM-BVLOS) 

      UTM BVLOS is supporting the future of aviation by operationalizing UTM for safe use of drones in our everyday lives. UTM BVLOS is part of a new traffic management paradigm called Extensible Traffic Management (xTM) that will use digital information exchange, cooperative operating practices, and automation to provide air traffic management for remotely piloted operations for small UAS beyond an operator’s visual line of sight. This project focuses on enabling operations in a low- altitude airspace, including drone package delivery and public safety operations. 
      As the FAA works to authorize these types of flights, NASA’s UTM BVLOS team is working with industry to ensure these operations can be routine, safe, and efficient. One such effort is the industry-driven “Key Site Operational Evaluation” out of North Texas, where UTM BVLOS is helping to test UTM tools and services in an operational context.  
      Digital Information Platform (DIP)
      DIP is focused on increasing access to digital information to enable increasingly sustainable and efficient operations for today and future airspace systems. DIP is prototyping a digital service-oriented framework that uses machine learning to provide information, including traffic predictions, weather information, and in-time flight trajectory updates. DIP tests and validates key services for end-to-end trajectory planning and surface operations. 
      DIP is engaging with the FAA, industry, flight operators, and relevant stakeholders, in a series of Sustainable Flight National Partnership – Operations demonstrations to support the United States Climate Action Plan objective of net-zero emissions by 2050. Through these types of collaborations, DIP tests and validates key services and capabilities for end-to-end trajectory planning and surface operations.
      Pathfinding for Airspace with Autonomous Vehicles (PAAV)  
      PAAV is focused on enabling remotely piloted operations in today’s airspace, which includes assessing increasingly automated capabilities to allow safe operations across all phases of flight.
      PAAV is working with key stakeholders, including the FAA, industry standards organizations, and industry partners to develop an ecosystem which helps validate standards, concepts, procedures, and technology. This research will help test and validate a broad range of tools and services that could provide critical information and functions necessary for remotely piloted operations at lower complexity airspace shared with conventional aircrafts. This includes ground-based surveillance to detect and avoid hazards, command and control communications, and relevant weather information, which is critical for safe, seamless, and scalable UAS cargo operations.  
      NAS Exploratory Concepts & Technologies (NExCT)
      Advancements in aircraft design, power, and propulsion systems are enabling high-altitude long-endurance vehicles, such as balloons, airships, and solar aircraft to operate at altitudes of 60,000 feet and above. This airspace is referred to as “Upper Class E” airspace in the United States, or ETM. These advancements open doors to benefits ranging from increased internet coverage, improved disaster response, expanded scientific missions, to even supersonic flight. To accommodate and foster this growth, NExCT is developing a new traffic management concept in this airspace.  
      NExCT is working with the FAA and industry partners to extend a new concept for safely integrating and scaling air traffic across UTM, UAM, and ETM, collectively referenced as the Extensible Traffic Management (xTM) domain. Together, this research project will enable, test, and validate a common xTM framework that is efficient and safe.  
      ATM-X
      AOSP
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators 
      Article 2 weeks ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Solar System Overview The solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
      Explore NASA’s History
      Share
      Details
      Last Updated Sep 11, 2024 EditorJim BankeContactHillary Smithhillary.smith@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Air Traffic Management – Exploration View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4284–4286: Environmental Science Extravaganza
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4282 (2024-08-22 23:39:35 UTC). NASA/JPL-Caltech Earth planning date: Friday, Aug. 23, 2024
      One of the many challenges of operating a rover on another planet is that we don’t always know where we’re going to be located before planning starts each day. Although we do plan our drives in advance, Curiosity doesn’t blindly follow the orders that we deliver. If an unsafe situation is detected, such as if the wheels slip too much in the sand or if the rover tries to drive along too steep of a slope, it will end the drive early and wait for us back on Earth to assess the situation. Although we prefer for the rover to end up parked exactly where we told it to, safety is always the first priority.
      Coming into planning today, it looked like it was going to be smooth riding. Before planning began, we received an email from our localization team informing us that Monday’s short drive away from Kings Canyon appeared to have completed successfully, so everyone was ready to start poking around in our new workspace. It wasn’t long before we realized that we were facing a bit of an unusual situation. Although the drive completed, we were missing almost all of our post-drive imaging. When a drive completes, we take a set of Navcam, Mastcam, and Hazcam images of our new location that we then use to determine the targets that we want to perform contact science and remote sensing on and to plan our drives. Without those images, there are very few activities that we can plan. Fortunately, we did receive one Navcam image near our new workspace (which you can see in the cover image above), so the geology and mineralogy (GEO) team had something to work with, though their ability to select targets was still severely limited.
      For me, on the environmental science (ENV) team, this was great news. Almost all of our observations are completely untargeted, so we don’t really care where exactly the rover is located. As such, we were given an opportunity to make lemonade out of the lemons that the mission was handed today. In a reversal from our usual roles, GEO planned out their limited set of activities then passed the rest of the science time over to ENV. This was particularly exciting given that, as was noted on Wednesday [LINK HERE], we’ve initiated a dust storm watch. The dust storm developing on the other side of Mars is likely the annual “C” storm. The last time a dust storm went global this late in the year was during the Viking era, so we expect that this storm will stay regional rather than becoming global. Still, because global dust storms happen so infrequently, we’ve initiated a storm watch so that we’re ready just in case the unexpected happens.
      Although GEO’s activities are limited in this plan, the team did the best with what little data they had available. These activities include ChemCam LIBS and Mastcam observations of “Lembert Dome” (some nodular light-toned bedrock), “Wilts Col” (a dark-toned float block that we got ChemCam passive spectra of back on sol 4259), and “Return Creek” (another float block). We’re also taking ChemCam passive spectra and Mastcam images of a dark-toned float block “Matlock Lake.” In preparation for planning on Monday, we’re also taking a Mastcam survey of the workspace. Because we had to pull our arm activities and the drive we had planned, the CheMin team was also able to fit in an empty cell analysis activity that they had been looking for time to execute.
      ENV’s activities are nothing unusual, but they are numerous. We were able to fit in about three-and-a-half hours of dust devil movies over these three sols, as well as about an hour-and-a-half of cloud movies, including some shortly before sunset when we rarely are able to take movies. In addition, we have a handful of Navcam line-of-sight and Mastcam tau observations to monitor the developing dust storm.
      In classic just-too-late form, the missing data finally appeared right as we were finalizing the plan. Not of any use to us today (though the views from our new location are as stunning as ever), but we’re set up for a return to normal operations on Monday.
      Written by Remington Free, Operations Systems Engineer at NASA Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 26, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4282-4283: Bumping Away from Kings Canyon


      Article


      25 mins ago
      2 min read Sols 4280-4281: Last Call at Kings Canyon


      Article


      6 days ago
      4 min read Sols 4277-4279: Getting Ready To Say Goodbye to the King!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A fire burns in Fishlake National Forest, as part of the Fall 2023 FASMEE prescribed burn. NASA/ Grace Weikert Background
      Fire is a natural occurrence in many ecosystems and can promote ecological health. However, wildfires are growing in scope and occurring more often than in the past. Among other causes this is due to human-caused climate impacts and the expansion of communities into areas with wildland vegetation. These blazes continue to significantly harm communities, public health, and natural ecosystems. NASA is leveraging cutting-edge science and technology to better understand wildland fire behavior and provide valuable tools for fire policy, response, and mitigation. 
      NASA’s Stake in Wildfire
      NASA’s contributions to wildland fire management span decades. This includes research to better understand the role fire plays in Earth’s dynamic atmosphere, and airborne and spaceborne sensors to analyze fire lifecycles. Much of this research and technology is still used by wildfire agencies across the globe today. NASA is building on this research and technology development with the Wildland Fire Management Initiative (WMI).  
      WMI leverages expertise across the Agency in space technology, science, and aeronautics to improve wildfire research and response. Through this effort, NASA and its partners will continue to provide tools and technologies for improved predictive fire modeling, risk assessment, fire prevention, suppression and post-fire recovery operations. NASA’s WMI aims to equip responders with improved tools for managing these fires
      How NASA is Tackling Wildfire

      NASA is collaborating with other government agencies, academia, and commercial industries to build a concept of operations for the future of wildland fire management. This means identifying gaps in current wildland fire technologies and procedures and laying out clear solutions to address those challenges.  
      NASA will perform a demonstration of wildland fire technologies – including X – in the coming years. 
      To provide a well-rounded toolkit for improving wildland operations, NASA and is tackling every aspect of wildland fire response. These efforts include: 
      Pre-Fire 
      Fuel fire maps with improved accuracy   Tools that identify where and when safe, preventative burn treatments would be most effective  Airspace management and safety technologies to enable mainstream use of uncrewed aircraft systems in prescribed burns  Active Fire 
      Fire detection and tracking imagery   Improved fire information management systems  Models for changing fire conditions, including fire behavior, and wind and atmospheric tracking for quality forecasts  Uncrewed aircraft and high-altitude balloons for real-time communications for fighting fires in harsh environments  Uncrewed Aircraft Systems Traffic Management (UTM) to expand use of uncrewed aircraft systems in fire response, particularly in environments where traditional air traffic control technologies aren’t available  An airspace awareness and communications system to enable remotely piloted aircraft to identify, monitor, and suppress wildfires 24 hours a day  Post-Fire 
      Improved fire impact assessments, including fire severity, air and water quality, risks of landslides, debris flows, and burn scars  Ground-based, airborne, and spaceborne observations to develop monitoring systems for air quality and map burn severity and develop and enhance models and predictions of post-fire hazards  NASA’s Disasters Response Coordination System (DRCS) supports all three fire response aspects listed above. The DRCS, developed under the Agency’s Earth Science Division’s Disasters Program, provides decisional support to international and domestic operational response agencies. This support includes products for understanding wildfire movement and potential pathways, burn-area maps, and impacts of fire, ash, and smoke to population and critical infrastructure. DCRS tools also provide assessments of post-fire flooding and debris flow susceptibility. 
      NASA’s Investment in New Wildland Fire Technologies  
      NASA’s WMI offers grants, contracts, and prizes to small businesses, research institutions, and other wildland technology innovators. Some related technology development activities underway include: 
      Testing communications technologies for incident response teams in areas with no cellphone coverage via a high-altitude balloon 60,000 feet above ground level  Developing wildfire detection systems and instruments for crewed and uncrewed aircraft   Funding early-stage technology development for remote sensing instruments and sensor systems  Developing and flight testing integrated, compact systems for small spacecraft and other platforms for autonomous detection, location tracking, and data collection of transient smoke plumes, early wildfires and other events  Licensing technologies relevant to wildland fire management and hosting wildland fire webinars to promote NASA technology licensing  Partners 
      The NASA Wildland Fire Management Initiative team collaborates with industry, academia, philanthropic institutions, and other government agencies for a more fire-resilient future. These include:  
      U.S. Forest Service  The California Department of Forestry and Fire Protection  The National Oceanic and Atmospheric Administration  The Federal Aviation Administration  The Department of Homeland Security  The Department of Defense  The National Wildfire Coordinating Group  WMI Deliverables
      Through these combined efforts, NASA aims to address urgent wildland fire management challenges and ensure communities are better prepared for wildland fires. NASA will continue to expand partnerships within wildland fire management agencies for technology development and adoptions. 
      For more information, email: Agency-WildlandFiresInitiative@mail.nasa.gov 
      View the full article
    • By NASA
      NASA’s Artemis missions aim to establish a sustained lunar presence on and around the Moon. Communications and navigation technologies will be critical to enabling the safety, science, and operations of our astronauts and missions.NASA Solicitation Number: NNH16ZCQ001K-1_Appendix-Q-LUTNOMS
      July 8, 2024 – Solicitation Released
      Solicitation Overview
      NASA’s long-term vision to provide for a resilient space and ground communications and navigation infrastructure in which space mission users can seamlessly “roam” between an array of space-based and ground-based networks has been bolstered by innovative studies delivered by industry through the Next Space Technologies for Exploration (NextSTEP) – 2 Omnibus Broad Agency Announcement vehicle.  Initially, NASA seeks to create an interoperable architecture composed of a mixture of existing NASA assets and commercial networks and services.  In the long-term, this will allow for a smooth transition to fully commercialized communications services for near-Earth users.  The overarching goal is to create a reliable, robust, and cost-effective set of commercial services in which NASA is one of many customers.
      NASA’s Commercialization, Innovation, and Synergies (CIS) Office has released a solicitation notice under the Next Space Technologies for Exploration Partnerships-2 (Next STEP-2) Broad Agency Announcement (BAA) to seek industry insights, innovative guidance, and demonstrations in the following two (2) Study Areas: 
      Lunar User Terminals Network Orchestration and Management System (NOMS) To support lunar surface operations, NASA is seeking state-of-the-art industry studies, system development, and demonstrations for a dual-purpose navigation and communication lunar surface user terminal.  The terminal must meet technical requirements provided by the government to support lunar surface exploration plans and ensure interoperability with developed LunaNet and Lunar Communications Relay and Navigation System (LCRNS) standards.  The requirements will be split into separate LunaNet Augmented Forward Signal (AFS) navigation receiver and communications transceiver capabilities.  However, the development of a combined communications and position, navigation, and timing (CPNT) system capable of meeting the full suite of requirements is desired.
      Additionally, NASA is seeking innovative industry studies and demonstrations on advanced Network Orchestration and Management Systems (NOMS) that effectively address NASA technical requirements aimed at controlling and interfacing with a globally distributed network of Satellite Ground Systems currently supporting the Near Space Network (NSN).
      The resulting studies will ensure advancement of NASA’s development of space communication and exploration technologies, capabilities, and concepts.
      View the full article
    • By NASA
      Geostationary Operational Environmental Satellite-U (GOES-U) Launch
  • Check out these Videos

×
×
  • Create New...