Jump to content

Oxygen Systems


NASA

Recommended Posts

  • Publishers
Oxygen

Specializing in the study of oxygen compatibility in space, aircraft, medical, and industrial applications, we investigate the effects of increased oxygen concentration on the ignition and burning of materials and components to help ensure the safety of personnel and equipment.
In systems or environments with higher oxygen content and/or pressure, materials that normally do not burn have a lower ignition temperature, are more vigorously combustible, and have a higher flame temperature if they do burn.  In response to the reactivity of oxygen, vigorous testing and requirements for the selection, combination, and cleanliness of material and components used in oxygen service have been developed with our world renowned experts often leading the way.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Suicide prevention is a top military priority every day, but takes on even greater focus each September, designated since 2008 as National Suicide Prevention month.

      View the full article
    • By NASA
      2 min read
      NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking achievements. The mission team was recently recognized by the American Institute of Aeronautics and Astronautics (AIAA)with the 2024 Space Systems Award during this year’s AIAA ASCEND event, held July 29 to Aug. 2 in Las Vegas.​
      APL’s Geffrey Ottman (left), electrical systems engineer on NASA’s DART (Double Asteroid Redirection Test) and APL’s Betsy Congdon (center), who served as the mechanical systems engineer on the mission, accepted the 2024 American Institute of Aeronautics and Astronautics (AIAA) Space Systems Award on behalf of the team during this year’s AIAA ASCEND event, which was held from July 29 to Aug. 2 in Las Vegas, Nevada. Credit: AIAA The award, presented by the AIAA Space Systems Technical Committee, celebrates outstanding achievements in the architecture, analysis, design and implementation of space systems. The DART team was lauded for “outstanding achievement in the development and operation of the DART spacecraft, completing humanity’s first in-space demonstration of planetary defense technology.”
      Designed, built and operated for NASA by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, the DART spacecraft was launched in 2021 and, roughly 10 months later, successfully impacted the asteroid Dimorphos in the fall of 2022. The deliberate collision altered the asteroid’s orbit around its larger companion asteroid, Didymos, by 33 minutes. That historic achievement showcased the potential to divert hazardous asteroids, offering a critical tool for safeguarding Earth from real possible impacts in the future.
      The Space Systems Award has regularly recognized extraordinary achievements in space system design and implementation. The DART mission joins a distinguished list of past recipients who have significantly advanced the field of aerospace science and technology. 
      APL managed the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. NASA provided support for the mission from several centers, including the Jet Propulsion Laboratory in Southern California; Goddard Space Flight Center in Greenbelt, Maryland; Johnson Space Center in Houston; Glenn Research Center in Cleveland; and Langley Research Center in Hampton, Virginia.
      Share








      Details
      Last Updated Aug 21, 2024 Editor Bill Keeter Related Terms
      DART (Double Asteroid Redirection Test) Planetary Defense Coordination Office View the full article
    • By Space Force
      Three years as a Space Force Field Command; 70 years of military space development

      View the full article
    • By NASA
      Muthukumaran Ramasubramanian, Slesa Adhikari, and Nish Pantha from IMPACT/ST11 organized hands-on workshops and a hackathon in collaboration with the Department of Computational Intelligence at SRMIST’s School of Computing in Chennai, India. These sessions were held as part of the IEEE GRSS-ESI TC (Geoscience and Remote Sensing Society – Earth Science Informatics Technical Committee) Remote Sensing Working Group (RSDS) outreach activities during 4/23-26/24. The team provided students with materials and resources on remote sensing data systems, large language models, and natural language processing for data discovery and visualization. Following the workshops, 15 teams competed in a hackathon using the provided course materials. The IMPACT team assessed the projects based on the students’ understanding and application of data systems, their creativity in developing end-to-end solutions, and the relevancy to the project’s goals. The top-performing teams received monetary awards sponsored by SRMIST and were also recognized with certificates. Mr. Ramasubramanian leads the Databases in Remote Sensing Working Group within the ESI TC under the leadership of Manil Maskey (ST11).

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept of the X-66 aircraft Boeing will produce through NASA’s Sustainable Flight Demonstrator project. The aircraft, designed to prove the concept of more aerodynamic, fuel-efficient transonic truss-braced wings, is an example of the type of project model-based systems analysis and engineering will provide benefits to.Boeing As NASA continues cutting-edge aeronautics research, the agency also is taking steps to make sure the benefits from these diverse technologies are greater than the sum of their parts.
      To tackle that challenge, NASA is using Model-Based Systems Analysis and Engineering (MBSAE). This type of engineering digitally simulates how multiple technologies could best work together as a single, complex system. It is performed using advanced digital tools and computing programs.
      The goal: Optimize the next generation of 21st-century aviation technology.
      Model Benefits
      “MBSAE provides a way to envision how all these technologies, being developed separately, can all fit together in the end,” said Eric Hendricks, who leads MBSAE integration efforts for NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington.
      By using this form of digital engineering, NASA’s aeronautical innovators can have a better idea of how their research in one area (say, ultra-efficient airliners) could best benefit, and work in tandem, with another area (say, future airspace safety).
      Using detailed, customizable digital models, researchers can simulate these complex systems working together with a high degree of accuracy and then figure out how the greatest benefits could be achieved.
      “As we move toward these advanced systems, MBSAE can connect different disciplines and determine how to eke out the best performance,” Hendricks said.
      That process feeds back into the research itself, helping researchers to significantly improve aviation’s sustainability – amongst other goals.
      Zeroing In
      MBSAE does more than integrating complex systems, however. Each system, individually, can be optimized using MBSAE tools.
      “Before the technology is even fully developed, we can run highly accurate digital simulations that inform the research itself,” Hendricks said. “A digital flight test is a lot simpler and less costly than a real flight test.”
      For example, one of NASA’s new MBSAE tools, Aviary, includes the ability to consider gradients. That means Aviary can figure out how to more efficiently optimize a given technology.
      Say a researcher would like to know which type of battery is needed to power an airplane during a certain maneuver. The researcher inputs information about the airplane, the maneuver, and battery technologies into Aviary, then Aviary goes and runs digital flight tests and comes back with which type of battery worked best.
      Digital flights tests like this can be done for myriad other areas as well, ranging from an aircraft’s overall shape to the size of its engine core, its electrical systems, and beyond. Then, the digital flight tests can help figure out how to combine these systems in the most effective way.
      Digital Era Aeronautics
      Another way MBSAE can come in handy is the scale of these aviation transformations.
      With demand for single-aisle airliners expected to rise dramatically in the coming decades, measuring the emissions reductions from a certain wing design, for example, would not just extend to one aircraft, but also an entire fleet.
      “We’ll be able to take what we learn from our sustainable aviation projects and simulate the technology entering the fleet at certain points,” said Rich Wahls, NASA’s mission integration manager for the Sustainable Flight National Partnership at NASA Headquarters. “We can model the fleet itself to see how much more sustainable these technologies are across the board.”
      Ultimately, MBSAE also represents a new era in aeronautical innovation – both at NASA and in the aviation industry, with whom NASA is working closely to ensure its MBSAE efforts are cross compatible on an opensource platform.
      “The MBSAE team has lots of early-to-mid career folks,” Hendricks said. “It’s great to see the younger generation get involved and even take the lead, especially since these digital efforts can facilitate knowledge transfer as well.”
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read System-Wide Safety Project Description
      Article 4 days ago 1 min read System-Wide Safety Project Leadership
      Article 4 days ago 3 min read NASA Embraces Streaming Service to Reach, Inspire Artemis Generation
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 04, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Flight Innovation Sustainable Flight National Partnership View the full article
  • Check out these Videos

×
×
  • Create New...