Members Can Post Anonymously On This Site
Oxygen Systems
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Boles.pdf
Jessica Boles
University of California, Berkeley
This project will develop piezoelectric-based power conversion for small power systems on the lunar surface. These piezoelectric systems can potentially offer high power density to significantly reduce size, weight, and cost. They can also offer high efficiency as well as resistance to the extreme lunar environment with its expected prolonged exposure to extreme cold and radiation. The effort will build and test prototype piezoelectric DC-to-DC power converters and DC-to-DC power supplies.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By Space Force
These Firm Fixed-Price, Indefinite-Delivery Requirements contracts were awarded to SpaceX, United Launch Services, and Blue Origin to provide critical space support to meet national security objectives.
View the full article
-
By NASA
Depending on where you stand at the lunar South Pole, you may experience temperatures of 130°F (54°C) during sunlit periods, or as low as -334°F (-203°C) in a permanently shadowed region. Keeping crews comfortable and tools and vehicles operational in such extreme temperatures is a key challenge for engineers at Johnson Space Center working on elements of NASA’s Artemis campaign.
Abigail Howard is part of that innovative team. Since joining Johnson in 2019, she has conducted thermal analysis for projects including the lunar terrain vehicle (LTV), pressurized rover, VIPER (Volatiles Investigating Polar Exploration Rover), and Gateway – humanity’s first lunar space station. Her work explores how different materials and components respond to different temperatures and how to manage heat transfer in products and structures.
She currently serves as the passive thermal system manager for the Extravehicular Activity and Human Surface Mobility Program, leading a small team of thermal analysts. Together, they provide expertise on passive thermal design, hardware, modeling, and testing to vendors and international partners that are developing rovers and tools for human exploration of the lunar surface.
Abigail Howard posing in front of a mockup of VIPER (Volatiles Investigating Polar Exploration Rover), which she worked on as a thermal analyst for three years. Image courtesy of Abigail Howard Howard said her sudden shift from thermal analysis engineer to thermal system manager involved a steep learning curve. “Every day was like drinking through a firehose. I had to learn very quickly about systems engineering tasks, project phases, and leadership, while also learning about many new thermal approaches and designs so that I could provide good insight to project leadership and program vendors and partners,” she said. “Having a good group of senior engineers and friends to lean on and building up my team helped me get through it, but the single most important thing was not giving up. It gets easier and persistence pays off!”
Abigail Howard (left) and Brittany Spivey (right) after presenting their poster at the 2022 International Symposium for Materials in the Space Environment in Leiden, the Netherlands. Image courtesy of Abigail Howard Howard feels fortunate to have worked on many interesting projects at NASA and presented her work at several conferences. Top achievements include watching her first NASA project launch successfully on Artemis I and supporting the LTV Source Evaluation Board as the thermal representative. “Something I’m really proud of is obtaining funding for and managing a test that looked at thermal performance of dust mitigation for spacecraft radiators,” she added.
Abigail Howard removes lunar dust simulant from a tray holding radiator test coupons during a test to evaluate thermal performance of radiators with integrated Electrodynamic Dust Shield for dust mitigation. Image courtesy of Abigail Howard She believes interesting and challenging work is important but says the biggest determinant to professional success and satisfaction is your team and your team lead. “Having a really great team and team lead on Gateway thermal taught me the kind of leader and teammate I want to be,” she said.
Howard encourages fellow members of the Artemis Generation to not let imposter syndrome get in their way. “Focus on the evidence of your abilities and remember that no one is in this alone,” she said. “It’s okay to ask for help.”
View the full article
-
By Space Force
A US space domain awareness payload hosted on Japan's Quasi-Zenith Satellite 6 successfully launched on a Japanese H-3 launch vehicle from the Yoshinobu Launch Complex at the Japan Aerospace Exploration Agency’s Tanegashima Space Center in Japan on February 2.
View the full article
-
By NASA
Teams with NASA are gaining momentum as work progresses toward future lunar missions for the benefit of humanity as numerous flight hardware shipments from across the world arrived at the agency’s Kennedy Space Center in Florida for the first crewed Artemis flight test and follow-on lunar missions. The skyline at Kennedy will soon see added structures as teams build up the ground systems needed to support them.
Crews are well underway with parallel preparations for the Artemis II flight, as well as buildup of NASA’s mobile launcher 2 tower for use during the launch of the SLS (Space Launch System) Block 1B rocket, beginning with the Artemis IV mission. This version of NASA’s rocket will use a more powerful upper stage to launch with crew and more cargo on lunar missions. Technicians have begun upper stage umbilical connections testing that will help supply fuel and other commodities to the rocket while at the launch pad.
In summer 2024, technicians from NASA and contractor Bechtel National, Inc. completed a milestone called jack and set, where the center’s mega-mover, the crawler transporter, repositioned the initial steel base assembly for mobile launcher 2 from temporary construction shoring to its six permanent pedestals near the Kennedy’s Vehicle Assembly Building.
Teams at Bechtel National, Inc. use a crane to lift Module 4 into place atop the mobile launcher 2 tower chair at its park site on Jan. 3, 2025, at Kennedy Space Center in Florida. Module 4 is the first of seven modules that will be stacked vertically to make up the almost 400-foot launch tower that will be used beginning with the Artemis IV mission.Betchel National Inc./Allison Sijgers “The NASA Bechtel mobile launcher 2 team is ahead of schedule and gaining momentum by the day,” stated Darrell Foster, ground systems integration manager, NASA’s Exploration Ground Systems Program at NASA Kennedy. “In parallel to all of the progress at our main build site, the remaining tower modules are assembled and outfitted at a second construction site on center.”
As construction of the mobile launcher 2’s base continues, the assembly operations shift into integration of the modules that will make up the tower. In mid-October 2024, crews completed installation of the chair, named for its resemblance to a giant seat. The chair serves as the interface between the base deck and the vertical modules which are the components that will make up the tower, and stands at 80-feet-tall.
In December 2024, teams completed the rig and set Module 4 operation where the first of a total of seven 40-foot-tall modules was stacked on top of the chair. Becthel crews rigged the module to a heavy lift crane, raised the module more than 150-feet, and secured the four corners to the tower chair. Once complete, the entire mobile launcher structure will reach a height of nearly 400 feet – approximately the length of four Olympic-sized swimming pools placed end-to-end.
On the opposite side of the center, test teams at the Launch Equipment Test Facility are testing the new umbilical interfaces, which will be located on mobile launcher 2, that will be needed to support the new SLS Block 1B Exploration Upper Stage. The umbilicals are connecting lines that provide fuel, oxidizer, pneumatic pressure, instrumentation, and electrical connections from the mobile launcher to the upper stage and other elements of SLS and NASA’s Orion spacecraft.
“All ambient temperature testing has been successfully completed and the team is now beginning cryogenic testing, where liquid nitrogen and liquid hydrogen will flow through the umbilicals to verify acceptable performance,” stated Kevin Jumper, lab manager, NASA Launch Equipment Test Facility at Kennedy. “The Exploration Upper Stage umbilical team has made significant progress on check-out and verification testing of the mobile launcher 2 umbilicals.”
https://www.nasa.gov/wp-content/uploads/2025/01/eusu-test-3-5b-run-1.mp4 Exploration Upper Stage Umbilical retract testing is underway at the Launch Equipment Test Facility at Kennedy Space Center in Florida on Oct. 22, 2024. The new umbilical interface will be used beginning with the Artemis IV mission. Credit: LASSO Contract LETF Video Group The testing includes extension and retraction of the Exploration Upper Stage umbilical arms that will be installed on mobile launcher 2. The test team remotely triggers the umbilical arms to retract, ensuring the ground and flight umbilical plates separate as expected, simulating the operation that will be performed at lift off.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.