Jump to content

65 Years Ago: First Factory Rollout of the X-15 Hypersonic Rocket Plane


NASA

Recommended Posts

  • Publishers

On Oct. 15, 1958, the first X-15 hypersonic rocket-powered aircraft rolled out of its factory. A joint project among NASA, the U.S. Air Force, and the U.S. Navy, the X-15 greatly expanded our knowledge of flight at speeds exceeding Mach 6 and altitudes above 250,000 feet. Between 1959 and 1968, 12 pilots completed 199 missions, achieving ever-higher speeds and altitudes while gathering data on the aerodynamic and thermal performance of the aircraft flying to the edge of space and beyond and returning to Earth. The X-15 served as a platform for a series of experiments studying the unique hypersonic environment. The program experienced several mishaps and one fatal crash. Knowledge gained during X-15 missions influenced the development of future programs such as the space shuttle.

Rollout of the first X-15 hypersonic research rocket plane North American pilot A. Scott Crossfield poses in front of the X-15-1 Rear view of the X-15-1
Left: Rollout of the first X-15 hypersonic research rocket plane at the North American Aviation facility in Los Angeles. Middle: North American pilot A. Scott Crossfield poses in front of the X-15-1. Right: Rear view of the X-15-1, showing the twin XLR-11 rocket engines used on early test flights.

The origins of the X-15 date to 1952, when the Committee on Aerodynamics of the National Advisory Committee for Aeronautics (NACA) adopted a resolution to expand their research portfolio to study flight up to altitudes between 12 and 50 miles and Mach numbers between 4 and 10. The Air Force and Navy agreed and conducted joint feasibility studies at NACA’s field centers. On Dec. 30, 1954, the U.S. Air Force released a Request for Proposals (RPF) for aerospace firms to bid on building the experimental hypersonic aircraft. Four companies submitted proposals with the Air Force selecting North American Aviation, Los Angeles, as the winning bid on Sept. 30, 1955, awarding the contract in November. The Air Force held a separate competition for the aircraft’s XLR-99 rocket engine, a 57,000-pound throttleable single-chamber engine. The process began with release of the RFP on Feb. 4, 1955, and selection in February 1956 of the Reaction Motors Division of Thiokol Chemical Corporation. Delays in the development of the XLR-99 engine required North American to rely on a pair of four-nozzle XLR-11 engines, similar to the one that powered the X-1 on its historic sound-barrier breaking flight in 1947. Providing only 16,000 pounds of thrust, this left the X-15 significantly underpowered for the first 17 months of test flights. On Oct. 1, 1958, the new National Aeronautics and Space Administration (NASA) incorporated the NACA centers and inherited the X-15 project, just two weeks before rollout from the factory of the first flight article.

Crowds gather to admire the first X-15 after its rollout from the North American Aviation plant Workers at Edwards Air Force Base in California lift the first X-15 off its delivery truck
Left: Crowds gather to admire the first X-15 after its rollout from the North American Aviation plant in Los Angeles. Right: Workers at Edwards Air Force Base in California lift the first X-15 off its delivery truck.

On Oct. 15, 1958, the rollout of the first of the three aircraft took place with some fanfare at North American’s Los Angeles facility. Vice President Richard M. Nixon and news media attended the festivities, as did North American X-15 project manager Harrison A. “Stormy” Storms and several of the early X-15 pilots. After the conclusion of the ceremonies, workers wrapped the aircraft, placed it on a flatbed truck, and drove it overnight to the High Speed Flight Station, today NASA’s Armstrong Flight Research Center, at Edwards Air Force Base (AFB) in California’s Mojave Desert. Even before this first aircraft took to the skies, North American rolled out X-15-2 on Feb. 27, 1959. The third aircraft, equipped with the LR-99 engine and a more advanced adaptive flight control system, rounded out the small fleet in 1960.

Diagram showing the two main profiles used by the X-15, either for altitude or speed The twin XLR-11 engines and the more powerful XLR-99 engine used to power the X-15
Left: Diagram showing the two main profiles used by the X-15, either for altitude or speed. Right: The twin XLR-11 engines, left, and the more powerful XLR-99 engine used to power the X-15.

Like earlier X-planes, a carrier aircraft, in this case two modified B-52 Stratofortresses, released the 34,000-pound X-15 at an altitude of 45,000 feet to conserve its fuel for the research mission. Flights took place within the High Range, extending from Wendover AFB in Utah to the Rogers Dry Lake landing zone adjacent to Edwards AFB, with emergency landing zones along the way. Typical missions lasted eight to 12 minutes and followed either a high-altitude or a high-speed profile following launch from the B-52 and ignition of the rocket engine. After burnout of the engine, the pilot guided the aircraft to an unpowered landing on the lakebed runway. To withstand the high temperatures during hypersonic flight and reentry, the X-15’s outer skin consisted of a then-new nickel-chrome alloy called Inconel-X. Because traditional aerodynamic surfaces used for flight control while in the atmosphere do not work in the near vacuum of space, the X-15 used its Ballistic Control System thrusters for attitude control while flying outside the atmosphere. North American pilot A. Scott Crossfield had the primary responsibility for carrying out the initial test flights of the X-15 before handover to NASA and the Air Force.

The first captive flight of the X-15-1 rocket plane takes off under the wing of its B-52 Stratofortress carrier aircraft X-15-1 begins its first unpowered glide flight
Left: With North American Aviation pilot A. Scott Crossfield in the cockpit, the first captive flight of the X-15-1 rocket plane takes off under the wing of its B-52 Stratofortress carrier aircraft. Right: Seconds after release from the B-52, with Crossfield at the controls, the X-15-1 begins its first unpowered glide flight.

With Crossfield at the controls of X-15-1, the first captive flight during which the X-15 remained attached to the B-52’s wing, took place on March 10, 1959. Crossfield completed the first unpowered glide flight of an X-15 on June 8, the flight lasting just five minutes. On Sept. 17, at the controls of X-15-2, Crossfield completed the first powered flight of an X-15, reaching a speed of Mach 2.11 and an altitude of 52,000 feet. Overcoming a few hardware problems, he brought the aircraft to a successful landing after a flight lasting nine minutes. During 12 more flights, Crossfield expanded the aircraft’s flight envelope to Mach 2.97 and 88,116 feet while gathering important data on its flying characteristics. All except his last three flights used the lower thrust LR-11 engines, limiting the aircraft’s speed and altitude. The last three used the powerful LR-99 engine, the one the aircraft was designed for. Crossfield’s 14th flight on Dec. 6, 1960, marked the end of North American’s contracted testing program, turning the X-15 over to the Air Force and NASA.

Chief NASA X-15 pilot Joseph A. “Joe” Walker launches from the B-52 carrier aircraft to begin his first flight Walker following his altitude record-setting flight in 1963 Walker at the controls of the Lunar Landing Research Vehicle in 1964
Left: Chief NASA X-15 pilot Joseph A. “Joe” Walker launches from the B-52 carrier aircraft to begin his first flight. Middle: Walker following his altitude record-setting flight in 1963. Right: Walker at the controls of the Lunar Landing Research Vehicle in 1964.

On March 25, 1960, NASA’s chief X-15 pilot Joseph A. “Joe” Walker, completed the agency’s first flight aboard X-15-1. Walker, one of five NASA pilots to fly the X-15, completed 25 flights aboard the aircraft. On May 12, 1960, Walker took X-15-1 above Mach 3 for the first time. On two of his flights, Walker exceeded the Von Karman line, the internationally recognized boundary of space of 100 kilometers, or 62 miles, earning him astronaut wings. On a third flight, he flew above 50 miles, the altitude the Air Force considered the boundary of space. By that standard, 13 flights by eight X-15 pilots qualified them for Air Force astronaut wings. On Walker’s final flight on Aug. 22, 1963, he flew X-15-3 to an altitude of 354,200 feet, or 67.1 miles, the highest achieved in the X-15 program, and a record for piloted aircraft that stood until surpassed during the final flight of SpaceShipOne on Oct. 4, 2004. After leaving the X-15 program, Walker conducted 35 test flights of the Lunar Landing Research Vehicle (LLRV) between 1964 and 1966, the precursor to the Lunar Landing Training Vehicle that Apollo commanders used to simulate the final several hundred feet of the Lunar Module’s descent to the lunar surface. Tragically, Walker died in a mid-air collision on June 8, 1966, when his F-104 Starfighter struck an XB-70 Valkyrie during a demonstration exercise.

NASA X-15 pilot John B. “Jack” McKay poses with X-15-3 after a mission Rollout of X-15A-2 in 1964, repaired and modified following a landing mishap.
Left: NASA X-15 pilot John B. “Jack” McKay poses with X-15-3 after a mission. Middle: Rollout of X-15A-2 in 1964, repaired and modified following a landing mishap.

The second NASA X-15 pilot, John B. “Jack” McKay completed 29 flights, the most of any NASA pilot. He achieved a maximum speed of Mach 5.65 and reached an altitude of 295,600 feet, qualifying him for Air Force astronaut wings. On Nov. 9, 1962, he suffered serious injuries during a landing mishap on his seventh mission but recovered to make 22 more flights. Engineers at North American not only repaired the damaged X-15-2 but redesignated it as X-15A-2. They extended its fuselage by more than two feet and added two external fuel tanks to enable longer engine burns. McKay made another emergency landing on his 25th flight on May 6, 1966, when the X-15-1’s LR-99 engine shut down prematurely. The aircraft did not incur any damage and McKay suffered no injuries.

NASA pilot Neil A. Armstrong stands next to an X-15 Armstrong sits in Gemini VIII prior to liftoff Armstrong in the Apollo 11 Lunar Module Eagle following his historic Moon walk
Left: NASA pilot Neil A. Armstrong stands next to an X-15. Middle: Armstrong sits in Gemini VIII prior to liftoff. Right: Armstrong in the Apollo 11 Lunar Module Eagle following his historic Moon walk.

Neil A. Armstrong joined NACA as an experimental test pilot in January 1952, and gained experience flying the X-1B supersonic rocket plane. NACA selected him as its third X-15 pilot, and he flew the aircraft seven times. After his first two checkout flights in December 1960, Armstrong spent a year as a consultant on the X-20 Dyna-Soar program before returning to fly his remaining five X-15 missions. Because he helped to develop the adaptive flight control system, on Dec. 20, 1961, Armstrong completed the first flight of X-15-3, rebuilt after an explosion in June 1960 of the LR-99 engine on a test stand destroyed the back of the aircraft. On his sixth flight on April 20, 1962, while trying to maintain a constant g-load during reentry, the aircraft’s attitude caused it to skip out of the atmosphere. This resulted in an overshoot of the landing zone, requiring a high-altitude U-turn, with Armstrong just barely reaching the lakebed runway. Armstrong left the X-15 program when NASA selected him as an astronaut on Sept. 17, 1962. In March 1966, as the Gemini VIII Command Pilot, he executed the first docking in space and then guided the spacecraft back to Earth after the first in-space emergency. On July 20, 1969, during Apollo 11, Armstrong took humanity’s first step on the Moon.

NASA pilot Milton O. Thompson poses in front of X-15-3 Thompson poses in front of the M2-F2 lifting body aircraft after his first flight in 1966
Left: NASA pilot Milton O. Thompson poses in front of X-15-3. Right: Thompson poses in front of the M2-F2 lifting body aircraft after his first flight in 1966.

In June 1963, NASA selected Milton O. “Milt” Thompson as an X-15 pilot, and he completed 14 flights. Although he achieved a maximum speed of Mach 5.48 and reached 214,100 feet, more than half his flights remained at relatively low altitude but high speed to gather data on the effects of high temperatures on the skin of the X-15. Thompson transferred to test fly the experimental M2-F2 lifting body aircraft before giving up flying to manage advanced research projects for NASA, including influencing the design of the space shuttle orbiter. His X-15 experience convinced him that the orbiter did not need jet engines to assist in the landing. Thompson served as the chief engineer at NASA’s Dryden Flight Reseach Center, now Armstrong Flight Research Center, from 1975 until his death in 1993.

NASA pilot William “Bill” Dana poses in front of X-15-3 Dana after the final rocket powered aircraft flight, aboard the X-24B, at Edwards Air Force Base in 1975.
Left: NASA pilot William “Bill” Dana poses in front of X-15-3. Right: Dana after the final rocket powered aircraft flight, aboard the X-24B, at Edwards Air Force Base in 1975.

In May 1965, NASA selected William “Bill” H. Dana, already involved in the program as a chase pilot and simulation engineer, to backfill Thompson as an X-15 pilot. Dana completed 16 flights including what turned out to be the final flight of the X-15 program on Oct. 24, 1968. He reached a maximum speed of Mach 5.53 and an altitude of 306,900 feet, high enough to qualify him for Air Force astronaut wings. With the program sufficiently mature, in addition to gathering flight characteristics data, several experiments flew aboard Dana’s flights. On the last mission, Dana observed a Minuteman missile launch from Vandenberg Air Force Base. Following the end of the X-15 program, between April 1969 and December 1972, Dana piloted experimental lifting body aircraft like the HL-10 and M2-F3, and in September 1975, he flew the X-24B twice, including the final flight of a rocket-powered aircraft at Edwards. After test flying other aircraft, he served as Dryden’s chief engineer between 1993 and 1998, taking over from Thompson.

U.S. Air Force pilot Robert M. White after the last flight of an X-15 with the LR-11 engines White inside the X-15 about to launch on the first flight above Mach 6
Left: U.S. Air Force pilot Robert M. White after the last flight of an X-15 with the LR-11 engines. Right: White inside the X-15 about to launch on the first flight above Mach 6.

Five U.S. Air Force and one U.S. Navy pilot made history flying the X-15. The U.S. Air Force selected Iven C. “Kinch” Kincheloe as their first X-15 pilot, but tragically he died in an aircraft accident on July 26, 1958, before making a flight. His backup, Robert M. White, stepped in as the first Air Force pilot to fly the X-15, completing 16 missions. Over the course of these missions, White’s achievements included the first flight of an X-15 above 100,000 feet, then 200,000 feet, and eventually to 314,750 feet. That earned White U.S. Air Force astronaut wings on his July 17, 1962, flight. He also broke speed records, as the first person to fly faster than Mach 4, then Mach 5, and finally reaching Mach 6.04 – more than doubling the speed record in just eight months. After leaving the X-15 program, White flew combat missions in southeast Asia, the only X-15 pilot to see active duty in World War II, Korea, and Vietnam. He retired as a major general in 1981.

U.S. Navy pilot Forrest S. “Pete” Petersen poses next to an X-15 The B-52 carrier aircraft flies overhead to salute Petersen’s highest and fastest flight
Left: U.S. Navy pilot Forrest S. “Pete” Petersen poses next to an X-15. Right: The B-52 carrier aircraft flies overhead to salute Petersen’s highest and fastest flight.

Air Force pilot Robert A. Rushworth following a flight aboard X-15-3 photograph of two B-52s preparing to launch two X-15s in November 1960
Left: Air Force pilot Robert A. Rushworth following a flight aboard X-15-3. Right: Unusual photograph of two B-52s preparing to launch two X-15s in November 1960 – X-15-1 prepares to taxi for Rushworth’s first flight, left, and X-15-2 for A. Scott Crossfield and the first flight of the XLR-99 rocket engine. Image credit: courtesy mach25media.com.

The pilot with the most X-15 missions, the Air Force’s Robert A. Rushworth completed 34 flights. For the first time, flight surgeons could monitor a pilot’s electrocardiogram in real time thanks to a new biomonitoring system and did so during Rushworth’s seventh flight. On his 14th flight, Rushworth reached an altitude of 285,000 feet, high enough to earn him U.S. Air Force astronaut wings. Rushworth flew his fastest flight on Dec. 5, 1963, when he reached a top speed of Mach 6.06. On June 25, on his 21st mission, Rushworth completed the first flight of X-15A-2, rebuilt and upgraded following its November 1962 crash. He piloted it to Mach 4.59, the first time the aircraft flew faster than Mach 4. On his next flight, he took the aircraft past Mach 5. On his 34th and final mission, Rushworth tested one of the significant upgrades to X-15A-2, the addition of disposable external fuel and oxidizer tanks to increase the rocket engine’s burn time. He encountered some difficulties when he jettisoned the tanks at the half-full stage, a condition that planners had not anticipated, but successfully landed the aircraft. As previously planned, Rushworth left the X-15 program five days later, attending the National War College before flying 189 combat missions in Vietnam. He retired as a major general in 1981.

Air Force pilot Joe H. Engle following a flight aboard X-15A-2 NASA astronaut Engle poses in front of space shuttle Enterprise during its first rollout in 1976 Engle during Columbia’s STS-2 mission in November 198
Left: Air Force pilot Joe H. Engle following a flight aboard X-15A-2. Middle: NASA astronaut Engle poses in front of space shuttle Enterprise during its first rollout in 1976. Right: Engle during Columbia’s STS-2 mission in November 1981.

Air Force pilot Joe H. Engle joined the X-15 program in June 1963, completing 16 missions. He achieved his highest speed, Mach 5.71, on his 10th flight, and earned his U.S. Air Force astronaut wings at 33 years of age, the youngest X-15 pilot to do so, on his 14th flight. Within less than four months, Engle surpassed the 50-mile mark two more times on his final two X-15 flights in August and October 1965. Engle left the X-15 program when NASA selected him as an astronaut on April 4, 1966. Putting his X-15 experience to good use, he commanded two of the five Approach and Landing Tests with space shuttle Enterprise in 1977. In 1982, he commanded STS-2, the second orbital flight of Columbia, and in 1985 he commanded STS-51I, the sixth flight of Discovery. Comparing the X-15 and the space shuttle, the only person to have piloted both said, “From a pilot-task standpoint, the entry and landing are very similar, performance wise. You fly roughly the same glide speed and the same glide slope angle. The float and touchdown were very similar.” Engle retired from NASA and the Air Force as a major general in 1986 but remained active in an advisory capacity into the 2010s.

Air Force pilot William J. “Pete” Knight poses with X-15A-2 with its unusual white outer paint over an ablative coating Knight, right, following his speed record-setting flight in October 1967
Left: Air Force pilot William J. “Pete” Knight poses with X-15A-2 with its unusual white outer paint over an ablative coating. Right: Knight, right, following his speed record-setting flight in October 1967.

The Air Force selected William J. “Pete” Knight as an X-15 pilot in 1965, and he completed 16 flights in two years. On his eighth flight on Nov. 18, 1966, Knight took X-15A-2 to above Mach 6, with the fully fueled external tanks operating as expected. In an attempt to protect the X-15’s skin during sustained flight at Mach 6, or proposed future flights at Mach 7 and 8, engineers coated X-15A-2 with an ablative material. Since the color of the material resembled the pink of a pencil eraser, workers painted it a gleaming white. On Oct. 3, 1967, Knight flew X-15A-2, with fully fueled external tanks, to an unofficial speed record of Mach 6.70, or 4,520 miles per hour, for a piloted winged vehicle. The mark stood until surpassed during the reentry of space shuttle Columbia on April 14, 1981. While the flight appeared to have gone well, hypersonic shock waves, especially around a model scramjet attached to the bottom rear of the aircraft, caused such heating that it burned through the ablative material, exposing the skin of the aircraft to 2,400 degrees, twice its design limit. Postflight inspection revealed significant damage to the aircraft that would have ended catastrophically had the heating continued for a few more seconds. A previous flight to Mach 6.33 showed similar, although less, severe damage, but engineers did not consider it as a warning sign. Due to the damage, X-15A-2 never flew again. In 2003, space shuttle Columbia suffered similar burn, caused by damage to its thermal protection system, leading to loss of the vehicle and its seven-member crew. When the X-15 program ended at the end of 1968, Knight returned to active duty, flying 253 combat missions in Vietnam in 1969 and 1970. He eventually returned to Edwards as its vice commander before retiring in 1982 and entering politics.

Michael J. Adams, left, selected in the first group of astronauts for the U.S. Air Force’s Manned Orbiting Laboratory in 1965 Adams following a mission aboard X-15-1
Left: Michael J. Adams, left, selected in the first group of astronauts for the U.S. Air Force’s Manned Orbiting Laboratory in 1965. Right: Adams following a mission aboard X-15-1.

The U.S. Air Force first selected Michael J. Adams as an astronaut for the Manned Orbiting Laboratory program in November 1965 before transferring him to the X-15 program in July 1966 as its 12th and final pilot. He flew the X-15 seven times and on his third flight reached his highest speed of Mach 5.59. Adams took off on his seventh flight on Nov. 15, 1967, a mission using X-15-3 with its advanced flight control system, to reach 250,000 feet and Mach 6 to conduct several experiments. After overshooting to a peak altitude of 266,000 feet and beginning the descent but sill well outside the atmosphere, the X-15-3 entered into a hypersonic spin traveling at more than 3,000 miles per hour, at one point flying tail first. Adams and the aircraft’s systems recovered from the spin, but now the aircraft began serious pitch oscillations as it continued to fall. At 62,000 feet, the g-loads from the oscillations overcame the structural limits of the aircraft and it broke apart. The X-15-3 crashed, killing Adams. The accident investigation identified proximate causes as a short-circuit from one of the experiments that had not been tested at low atmospheric pressures or high temperatures, causing both the aircraft’s computer and its flight control system to repeatedly fail. Adams became distracted and did not realize his aircraft’s attitude was increasingly off nominal. In addition, an attitude indicator switch had been set at the wrong setting, providing Adams with confusing information. Telemetry to the ground did not include attitude information, so controllers did not know the problems Adams faced and could not provide any helpful direction. Adams may have suffered from vertigo, a condition for which he had previously tested positive, a fact not known to his flight surgeon. Two major changes from the accident included adding attitude information to the telemetry and ensuring that all pilots received thorough vestibular screening to identify cases of vertigo. With the loss of X-15-3 and the retirement of the damaged X-15A-2 following Knight’s October flight, only one aircraft, the original X-15-1, remained to close out the program until funding ran out in December 1968. The Air Force posthumously honored Adams with astronaut wings.

The Edwards Air Force Base ground crew poses in front of the B-52 with X-15-1 mounted under its wing during a rare snowstorm that thwarted a final attempt at a 200th flight
The Edwards Air Force Base ground crew poses in front of the B-52 with X-15-1 mounted under its wing during a rare snowstorm that thwarted a final attempt at a 200th flight.

NASA pilot Dana flew what turned out to be the 199th and final X-15 mission on Oct. 24, 1968. Managers tried to fly a 200th mission before funding ran out on Dec. 31. Eight attempts between Nov. 27 and Dec. 20 for Air Force pilot Knight to take X-15-1 on a final mission failed for a variety of reasons. Due to the delays, the initial mission plan of flying to 250,000 feet at Mach 4.9 in an attempt to visualize a missile launch from Vandenberg AFB had to change to a more modest altitude goal of 162,000 feet and reduced speed of Mach 3.9 to test a new experiment. On Dec. 20, with Knight suited up and ready to board the X-15, a rare snowstorm put an end to any plans to fly, and so the program ended. The next morning, on the other side of the continent, a Saturn V lifted off from NASA’s Kennedy Space Center in Florida to take Apollo 8 astronauts on the first voyage to the Moon. Seven months later, former NASA X-15 pilot Armstrong took humanity’s first steps on the Moon.

Summary of X-15 pilots’ accomplishments.
Summary of X-15 pilots’ accomplishments.

A grateful nation recognized the accomplishments of the X-15 pilots. On Nov. 28, 1961, in a White House ceremony President John F. Kennedy presented Crossfield, Walker, and White with the Harmon International Trophy for Aviators. On July 18, 1962, President Kennedy presented the prestigious Robert J. Collier Trophy to Crossfield, Walker, White, and Petersen for their pioneering hypersonic flights. On Dec. 3, 1968, President Lyndon B. Johnson presented the Harmon Trophy to Knight for his Mach 6.70 record-setting flight.

President John F. Kennedy, left, presents the Harmon Trophy to X-15 pilots A. Scott Crossfield of North American Aviation, Joseph A. Walker of NASA, and Robert White of the U.S. Air Force President Kennedy presents the Collier Trophy to X-15 pilots Crossfield, White, Walker, and Forrest S. Petersen of the U.S. Navy President Lyndon B. Johnson presents the Harmon Trophy to U.S. Air Force X-15 pilot William J. “Pete” Knight
Left: President John F. Kennedy, left, presents the Harmon Trophy to X-15 pilots A. Scott Crossfield of North American Aviation, Joseph A. Walker of NASA, and Robert White of the U.S. Air Force. Middle: President Kennedy presents the Collier Trophy to X-15 pilots Crossfield, White, Walker, and Forrest S. Petersen of the U.S. Navy. Right: President Lyndon B. Johnson presents the Harmon Trophy to U.S. Air Force X-15 pilot William J. “Pete” Knight.

The X-15-1 as it looked in the Milestones of Flight exhibit at the Smithsonian Institute’s National Air and Space Museum in Washington, D.C The X-15A-2 on display at the National Museum of the Air Force at Wright-Patterson Air Force Base (AFB), in Dayton, Ohio A replica of the X-15-3 as it looked on display in 1997 outside the entrance to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards AFB.
Left: The X-15-1 as it looked in the Milestones of Flight exhibit at the Smithsonian Institute’s National Air and Space Museum in Washington, D.C. Image credit: courtesy National Air and Space Museum. Middle: The X-15A-2 on display at the National Museum of the Air Force at Wright-Patterson Air Force Base (AFB), in Dayton, Ohio. Image credit: courtesy National Museum of the Air Force. Right: A replica of the X-15-3 as it looked on display in 1997 outside the entrance to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards AFB.

Following the end of the program, the two surviving X-15 aircraft found permanent homes in prestigious museums. The X-15-1 arrived at the Smithsonian Institution in Washington, D.C., in June 1969. When the new National Air and Space Museum opened in July 1976, the X-15-1 found a place of prominence in the Milestones of Flight exhibit. In 2019, curators placed it in temporary storage while the museum undergoes a major renovation. The X-15A-2 went on display at the Air Force Museum, now the National Museum of the Air Force at Wright-Patterson AFB, in Dayton, Ohio, where it still resides. Although the third aircraft was lost in a crash, North American built replica of X-15-3 that was mounted outside the entrance to Dryden in 1995. Damage from winds required its removal and refurbishment, and it is currently in storage at Armstrong.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training.
      Apollo 11
      For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November.

      Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo.
      On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events.  Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade.

      Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor.
      Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. 

      Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol.
      With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission.
      Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission.

      Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. 
      On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant.
      On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon.

      Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.
      Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process.
      Apollo 12
      In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission.

      Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad.
      On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface.

      Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft.
      With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net.
      Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft.
      On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators.
      Apollo 13

      Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right.
      Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp.
      Apollo 14 and 15

      Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15.
      Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly.
      NASA management changes

      Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator.
      On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969.
      To be continued …
      News from around the world in September 1969:
      September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York.
      September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS.
      September 20 – John Lennon announces in a private meeting his intention to leave The Beatles.
      September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs.
      September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres.
      September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes.
      September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album.
      Explore More
      8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 1 week ago View the full article
    • By European Space Agency
      Just a month after its launch, ESA’s Arctic Weather Satellite has already delivered its first images, notably capturing Storm Boris, which has been wreaking havoc across central Europe. 
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 4 min read
      Celebrating the First Earth Day Event at NASA Headquarters
      Photo. Young attendees pose in front of the NASA Worm at the Earth Day celebration at NASA HQ. Photo credit: NASA Introduction
      Organized by the Science Mission Directorate’s Science Support Office (SSO), NASA hosted its 12th annual Earth Day Celebration event from April 18–19, 2024. For the first time ever, the two-day event was held at NASA Headquarters (HQ) in Washington, DC.
      The in-person event, which was free and open to the public, featured the newly installed Earth Information Center (EIC) exhibit –­­ see Photos 1–4. The event featured 17 hands-on activities offered in NASA HQ’s East Lobby as well as two adjacent outdoor tents­. Event participants were given an activity passport called the “Passport to Fun” listing all the activities and encouraging attendees to visit the stations and interact with NASA staff – see Figure 1. After completing six or more activities, attendees were able to claim giveaway items, e.g., lenticulars, NASA bags, posters, and calendars.
      Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA Photos 1–3. Student attendees at the Earth Information Center (EIC) interactive exhibit. Photo credits: NASA




      Photo 4. Mark Subbarao [GSFC—Scientific Visualization Studio Lead] engages attendees with NASA science in front of the EIC Hyperwall. Photo credit: NASA Figure 1. Earth Day Activity Passport. Figure credit: NASA Prior to the event, Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] arranged for groups of students from several local schools to visit the NASA Earth Day event. This included over 300 students from DuVal High School, Morgan State University, Howard University, Prince George’s County Environmental Academy, Prince George’s County Virtual Academy, International Hispanic School, and homeschoolers.  On April 19, all of the students who were present at that time gathered for a plenary in the Webb Auditorium. Ferrell welcomed the attendees and provided introductions to prepare them for a virtual presentation by former NASA astronaut Paul Richards, who interacted with attendees and answered questions for roughly 20 minutes.
      After Richard’s presentation, the attendees heard from Karen St. Germain [NASA HQ—Director of NASA’s Earth Science Division], whose in-person remarks emphasized to the students the crucial albeit less publicized studies that NASA does of our home planet. Related to this year’s Earth Day theme, “Water Touches Everything,” she discussed the ability of NASA’s Earth observing satellites to track water in all its forms as it circulates throughout the Earth system. St. Germain then answered questions from the audience for 15 minutes – see Photos 5–8.
      Photo 5.Trena Ferrell [GSFC—Earth Science Education and Public Outreach Lead] welcomed student attendees to the Earth Day event. Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event. Photo credit: NASA Photos 6–7. Former NASA astronaut Paul Richards takes audience questions at the NASA Earth Day event. Photo credit: NASA Photo 8. Karen St. Germain [NASA Headquarters—Director of NASA’s Earth Science Division] provided remarks and answered student questions in the Webb Auditorium. Photo credit: NASA




      NASA Administrator Bill Nelson visited the event on April 19, accompanied by Karen St. Germain and several NASA staff members who guided him as he explored the activities offered – see Photos 9–10.
      Photo 9. NASA Administrator Bill Nelson [center, rear] spent time circulating among the NASA Earth Day hands-on activities. Here, he visits the “Measuring Light the Landsat Way” activity station, where Mike Taylor [GSFC/Science Systems and Applications, Inc.—Landsat Outreach Team] [left] explains how Landsat utilizes the electromagnetic spectrum and spectral signatures to better understand Earth. Photo credit: NASA Photo 10. [Left to right] Faith McKie [Acting NASA Press Secretary], Bill Nelson, Karen St. Germain, and Tom Wagner [Associate Director for Earth Action in the Earth Science Division of NASA’s Science Mission Directorate] during the Earth Day media briefing. Photo credit: NASA




      Throughout the two-day event, it is estimated that as many as 1500 public participants attended along with the 300 students already discussed. While SSO staff distributed 500 activity passports, many small groups and families shared a single passport. SSO staff estimates that the true number of participants may be close to 1500 – see Photos 11–19.
      Photo 11. A young Earth Day participant interacts with Ellen Gray [NASA GSFC—Earth Science News Team]. Photo credit: NASA Photo 12. Jenny Mottar [NASA HQ—Art  Director for the Science Mission Directorate] and Kevin Miller [GSFC—SSO Senior Graphic Designer] hand out “Water Touches Everything” NASA Earth Day posters to student attendees. Photo credit: NASA Photos 13. Ross Walter [GSFC—Data Visualizer and Animator, Landsat Outreach Team] engages with students at the “Viewing Earth From Above with Landsat” station. Photo credit: NASA Photos 14. Students explore the Chesapeake Bay as seen by Landsat 8 with a large, vinyl floor mat. Photo credit: NASA Photo 15. Students play a Global Ecosystem Dynamics Investigation (GEDI) Jeopardy game at the “GEDI Knights Measure Forests from Space” table. Photo credit: NASA Photo 16. Student attendees make ultraviolet-bead bracelets and Helio Big Year buttons at the Heliophysics station. Photo credit: NASA Photo 17. Young attendees engage with Valerie Casasanto [GSFC—Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Outreach Lead], who helps them work on a three-dimensional glacier puzzle at the “ICESat-2: Ice, Trees, and Earth Height, If You Please!” station. Photo credit: NASA Photo 18. Young attendees engage with the “Meteorite Map Challenge.” Photo credit: NASA Photo 19. Dorian Janney [GSFC—GPM Outreach Specialist] engages visitors at the “Connect the Drops” station, where visitors learn how and why measuring global precipitation helps us better understand our home planet. Photo credit: NASA




      Conclusion
      NASA’s first Earth Day Celebration at NASA Headquarters was quite successful. While attendance was lower than previous events held at the more heavily trafficked Union Station or the National Mall, there was a steady stream of people throughout the exhibit on both days. It was also a great opportunity to showcase the new EIC to the public.  Earth Day is the largest event organized annually by the SSO. This event requires months of planning, cross-divisional coordination, and intensive design of the hands-on activities – all carried from conceptualization through numerous revisions to implementation by more than 100 individuals from across the agency. This combined effort of SSO staff and assisting organizations results in an event that brings together thousands of visitors from a broad spectrum of ages and backgrounds to enjoy NASA science. This event would not have been possible were it not for the incredible efforts and collaboration put forth by so many of NASA’s outreach professionals. The SSO is grateful for all who helped to make this year’s Earth Day event a success and looks forward to Earth Day 2025.
      Dalia Kirshenblat
      NASA’s Goddard Space Flight Center/Global Science & Technology, Inc. (GSFC/GST)
      dalia.p.zelmankirshenblat@nasa.gov
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Earth Science View the full article
    • By European Space Agency
      Less than two weeks after being launched into orbit, Sentinel-2C has delivered its first images. These spectacular views of Earth offer a sneak peek at the data that this new satellite will provide for Copernicus – Europe’s world-leading Earth observation programme.
      View the full article
    • By NASA
      The X-15 hypersonic rocket-powered aircraft, built by North American Aviation (NAA), greatly expanded our knowledge of flight at speeds exceeding Mach 6 and altitudes above 250,000 feet. A joint project among NASA, the U.S. Air Force, and the U.S. Navy, the X-15’s first powered flight took place on Sept. 17, 1959, at the Flight Research Center, now the Armstrong Flight Research Center, at Edwards Air Force Base (AFB) in California. NAA chief test pilot A. Scott Crossfield piloted this flight and other early test flights before NASA and the Air Force took ownership of the aircraft. Between 1959 and 1968, 12 pilots completed 199 missions and achieved ever higher speeds and altitudes, knowledge and experience that later influenced the development of future programs such as the space shuttle. 

      Left: During its October 1958 rollout ceremony at the North American Aviation (NAA) facility in Los Angeles, NAA pilot A. Scott Crossfield poses in front of the X-15-1. Right: Rollout of X-15-2 at the NAA facility in February 1959. 
      The origins of the X-15 date to 1952, when the Committee on Aerodynamics of the National Advisory Committee for Aeronautics (NACA) adopted a resolution to expand their research portfolio to study flight at altitudes between 12 and 50 miles and Mach numbers between 4 and 10. The Air Force and Navy agreed and conducted joint feasibility studies at NACA’s field centers. In 1955, the Air Force selected North American Aviation (NAA), Los Angeles, to build three X-15 hypersonic aircraft.  
      On Oct. 1, 1958, the new National Aeronautics and Space Administration (NASA) incorporated the NACA centers and inherited the X-15 project. Two weeks later, on Oct. 15, 1958, the rollout of the first of the three aircraft took place at NAA’s Los Angeles facility where several of the early X-15 pilots, including Crossfield, attended. After the ceremony, workers wrapped the aircraft, placed it on a flatbed truck, and drove it overnight to the High Speed Flight Station, renamed by NASA the Flight Research Center in September 1959, where all the X-15 flights took place. Before this first aircraft took to the skies, NAA rolled out X-15-2 on Feb. 27, 1959. The X-15-3 rounded out the small fleet in early 1960. 

      Aerial view of the Flight Research Center, now NASA’s Armstrong Flight Research Center, at Edwards Air Force Base, California, with one of the B-52 carrier aircraft at left and an X-15 at right. Image credit: courtesy JD Barnes Collection. 

      Left: Diagram showing the two main profiles used by the X-15, either for altitude or speed. Right: The twin XLR-11 engines, left, and the more powerful XLR-99 engine used to power the X-15. 
      Like earlier X-planes, a carrier aircraft, in this case a modified B-52 Stratofortress, released the 34,000-pound X-15 at an altitude of 45,000 feet to conserve its fuel for the research mission. Flights took place within the High Range, a flight corridor extending from Wendover AFB in Utah to the Rogers Dry Lake landing zone adjacent to Edwards AFB, with emergency landing zones along the way. Typical research missions lasted eight to 12 minutes and followed either a high-altitude or a high-speed profile following launch from the B-52 and ignition of the X-15’s rocket engine. After burnout of the engine, the pilot guided the aircraft to an unpowered landing on the lakebed runway. To withstand the high temperatures during hypersonic flight and reentry, the X-15’s outer skin consisted of a then-new nickel-chrome alloy called Inconel-X. Because traditional aerodynamic surfaces used for flight control while in the atmosphere do not work in the near vacuum of space, the X-15 used its Ballistic Control System thrusters for attitude control while flying outside the atmosphere.  NAA substituted eight smaller XLR-11 engines that produced only 16,000 pounds of thrust because of delays in the development of the 57,000-pound thrust XLR-99 rocket engine, built specifically for the X-15, For the first 17 months of test flights, the X-15 remained significantly underpowered. NAA chief pilot Crossfield had the primary responsibility for carrying out the initial test flights of the X-15 before handover of the aircraft to NASA and the Air Force. 

      Left: Flight profile of the first unpowered glide test flight of the X-15. Right: A. Scott Crossfield pilots the X-15 during its first unpowered glide test flight in June 1959. 
      With Crossfield at the controls of X-15-1, the first captive flight during which the X-15 remained attached to the B-52’s wing, took place on March 10, 1959. Crossfield completed the first unpowered glide flight of X-15-1 on June 8, the flight lasting just five minutes. 

      Left: The B-52 carrier aircraft taxis on the runway at Edwards Air Force Base in California, with the X-15 and pilot A. Scott Crossfield ready to perform the first powered flight of the hypersonic research aircraft. Right: The B-52 carries the X-15 and Crossfield to the drop altitude. 

      Left: Pilot A. Scott Crossfield is visible in the cockpit of the X-15 shortly before the release from the B-52 carrier aircraft. Image credit: courtesy North American Aviation. Right: The X-15 dumps excess fuel just prior to the drop. 


      Left: The X-15 drops from the B-52 carrier aircraft to begin its first powered flight. Middle: The view from the B-52 as the X-15 drops away. Right: Pilot A. Scott Crossfield has ignited all eight of the X-15’s engines to begin the powered flight. 

      Left: View taken from a chase plane of the X-15 during its glide to the lakebed following its first powered flight. Middle: Pilot A. Scott Crossfield brings the X-15 to a smooth touchdown on the lakebed runway at Edwards Air Force Base in California. Image credit: courtesy North American Aviation. Right: Crossfield hops out of the cockpit at the conclusion of the X-15’s first successful powered flight. 
      On Sept. 17, at the controls of X-15-2, Crossfield completed the first powered flight of an X-15. Firing all eight of the XLR-11 engines for 224 seconds, he reached a speed of Mach 2.11, or 1,393 miles per hour, and an altitude of 52,341 feet. Overcoming a few hardware problems, he brought the aircraft to a successful landing after a flight lasting just over nine minutes and traveling 88 miles. During 12 more flights, Crossfield expanded the aircraft’s flight envelope to Mach 2.97 and 88,116 feet while gathering important data on its flying characteristics. His last three flights used the higher thrust XLR-99 engine, the one designed for the aircraft. Crossfield’s 14th flight on Dec. 6, 1960, marked the end of the contracted testing program, and North American turned the X-15 over to the Air Force and NASA. 

      Standing between the first two aircraft, North American Aviation chief test pilot A. Scott Crossfield, left, symbolically hands over the keys to the X-15 to U.S. Air Force pilot Robert M. White and NASA pilot Neil A. Armstrong at the conclusion of the contracted flight test program. Image credit: courtesy North American Aviation. 

      Left: Chief NASA X-15 pilot Joseph “Joe” A. Walker following his altitude record-setting flight in August 1963. Middle left: Air Force pilot William J. “Pete” Knight following his speed record-setting flight in October 1967. Middle right: NASA pilot Neil A. Armstrong stands next to an X-15. Right: Air Force pilot Joe H. Engle following a flight aboard X-15A-2 in December 1965. 
      Over nine years, Crossfield and 11 other pilots – five NASA, five U.S. Air Force, and one U.S. Navy – completed a total of 199 flights of the X-15, gathering data on the aerodynamic and thermal performance of the aircraft flying to the edge of space and returning to Earth. The pilots also conducted a series of experiments, taking advantage of the plane’s unique characteristics and flight environment. NASA chief pilot Joseph “Joe” A. Walker flew the first of his 25 flights in March 1960. On his final flight on Aug. 22, 1963, he took X-15-3 to an altitude of 354,200 feet, or 67.1 miles, the highest achieved in the X-15 program, and a record for piloted aircraft that stood until surpassed during the final flight of SpaceShipOne on Oct. 4, 2004.  
      On Oct. 3, 1967, Air Force pilot William J. “Pete” Knight flew X-15A-2, with fully fueled external tanks, to an unofficial speed record for a piloted winged vehicle of Mach 6.70, or 4,520 miles per hour. The mark stood until surpassed during the reentry of space shuttle Columbia on April 14, 1981. NASA pilot Neil A. Armstrong and Air Force pilot Joe H. Engle flew the X-15 before joining NASA’s astronaut corps. Armstrong took to the skies seven times in the X-15 prior to becoming an astronaut, where he flew the Gemini VIII mission in 1966 and took humanity’s first steps on the Moon in July 1969. Engle has the unique distinction as the only person to have flown both the X-15 (16 times) and the space shuttle (twice in the atmosphere and twice in space). Of the first powered X-15 flight, Engle said, it “was a real milestone in a program that we still benefit from today.” 
      Explore More
      3 min read NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
      Article 3 hours ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 1 day ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 7 days ago View the full article
  • Check out these Videos

×
×
  • Create New...