Jump to content

Recommended Posts

  • Publishers
Posted

Agency Leadership Talks NASA 2040, Artemis, Budget at Marshall Town Hall

By Jessica Barnett

From funding to historic achievements to the future of NASA, there was no shortage of topics for discussion during the latest Marshall Town Hall.

Marshall team members joined in person and online as Acting Marshall Center Director Joseph Pelfrey, NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Bob Cabana, and Deputy Associate Administrator Casey Swails shared their goals for Marshall and the agency’s future and answered questions from the audience in Activities Building 4316 on Sept. 18.

NASA Administrator Bill Nelson, far left, talks to Marshall team members during a Town Hall on Sept. 18 in Activities Building 4316. Joining him on the event stage, from left, are Marshall Acting Center Director Joseph Pelfrey, NASA Deputy Administrator Pam Melroy, NASA Associate Administrator Robert Cabana, and NASA Deputy Associate Administrator Casey Swails.
NASA Administrator Bill Nelson, far left, talks to Marshall team members during a Town Hall on Sept. 18 in Activities Building 4316. Joining him on the event stage, from left, are Marshall Acting Center Director Joseph Pelfrey, NASA Deputy Administrator Pam Melroy, NASA Associate Administrator Robert Cabana, and NASA Deputy Associate Administrator Casey Swails.
NASA/Charles Beason

Pelfrey kicked off the town hall by welcoming agency leaders and showering praise on the Marshall team.

“It’s exciting to see the accomplishments of what we’re doing as an agency and see so many parts of that have a Marshall fingerprint,” Pelfrey said. “It’s an honor to have our leadership team here to share some of the things going on within our agency and how Marshall fits into those plans.”

Nelson followed Pelfrey’s speech with another round of praise, calling Marshall team members “wizards who make the impossible possible.”

“We’re going back to the Moon to learn, to live, to create, to invent, in order for us to go to Mars and beyond, to discover those far, distant cosmic shores,” Nelson said. “And Marshall is very much a part of this.”

That work is being supported in part by NASA 2040, a strategic agency initiative aimed at driving meaningful changes that will allow the agency to realize its long-term vision for what leaders want the agency to be in 2040.

“Personally, I think it’s NASA’s role to do really hard things that only NASA can do,” Swails said. “When we talk about 2040 and we talk about our mission strategy, how we do make sure we have an operating model that best sets us up for a future that aligns to mission goals? How do we make sure we have an institution that frankly reflects how amazing and incredible our mission is?”

Cabana, right, responds to a question during the Q&A portion of the Marshall Town Hall.
Cabana, right, responds to a question during the Q&A portion of the Marshall Town Hall.
NASA/Charles Beason

Swails then presented the plan to achieving those goals which included a seven-part list of workstreams with associated teams and leaders focused on supporting the workforce, infrastructure, and technologies critical to keeping NASA a leader in science, aeronautics, and space exploration.

In addition to her speech, Swails held meetings Sept. 22 to further discuss NASA 2040. Cabana stressed the importance of such meetings and listening sessions during his portion of the town hall, encouraging Marshall team members to seize the opportunity to attend and offer feedback.

Agency leaders also shared how Marshall is key to not just the initiative’s success but the success of NASA’s mission.

“It’s important that we articulate and emphasize the science, technology, and impact we have,” Melroy said. “I’m personally excited, as I see the incredible science you work on here with ISS, what new discoveries we’re going to get with Artemis.”

Melroy and Cabana noted Marshall’s work on nuclear propulsion, with Artemis, and with the International Space Station.

“You’re not making a difference for Marshall Space Flight Center, the state of Alabama, or even the United States,” Cabana said. “You’re making a difference for humanity.”

A Marshall team member poses a question to agency leaders during the Q&A portion of the Town Hall.
A Marshall team member poses a question to agency leaders during the Q&A portion of the Town Hall.
NASA/Charles Beason

Cabana provided an update on the Artemis program, telling audience members that Artemis II is still on track for its launch next year and work is underway to prepare for Artemis III’s launch in 2025. He encouraged Marshall team members to be active participants and promote an inclusive environment as the agency continues toward 2040.

“What we are doing is too critical not to give it our very best and have that environment,” he said.

Also critical, however, is ensuring NASA has the budget for its goals. Nelson, a former U.S. senator, said he isn’t sure what those currently in Congress will decide, but he remains confident that NASA will be just fine.

He said there’s talk of NASA receiving level funding, which has caused angst among some, but that NASA’s international reach has made it favorable on both sides of the political aisle.

“At the end of the day, it’s going to be all right,” Nelson said. “There will be some bumps along the way on this budget; it is a sign of the times. I wish it were not that way, but I can tell you that NASA brings people together, and NASA unites, not just in domestic politics but around the world as well.”

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Marshall Wins Award for Most Funds Raised During 2022 Combined Federal Campaign

By Jessica Barnett

NASA’s Marshall Space Flight Center was recently awarded for raising more funds than any other large federal agency in the Greater Tennessee Valley Zone during the 2022 CFC (Combined Federal Campaign).

The CFC serves as the federal government’s only sanctioned charity fundraiser event, with civilian, military, contract, and postal employees all encouraged to contribute to the charity of their choice during the annual campaign.

Erin Richardson, center, chair of the 2022 Combined Federal Campaign at NASA’s Marshall Space Flight Center, holds Marshall’s award for raising more funds than any other large federal agency in the Greater Tennessee Valley Zone during the campaign. Standing with her, from left, are Marshall Associate Director, Technical, Larry Leopard and Marshall Associate Director Rae Ann Meyer.
Erin Richardson, center, chair of the 2022 Combined Federal Campaign at NASA’s Marshall Space Flight Center, holds Marshall’s award for raising more funds than any other large federal agency in the Greater Tennessee Valley Zone during the campaign. Standing with her, from left, are Marshall Associate Director, Technical, Larry Leopard and Marshall Associate Director Rae Ann Meyer.
NASA

Marshall kicked off the 2022 campaign last October with a charity fair, giving potential donors a chance to learn about some of the charities that benefit from CFC donations.  Erin Richardson, a materials science manager at Marshall who served as chair of the 2022 campaign, said the goal was more than just raising funds – it was about raising awareness of CFC and increasing participation in the campaign.

“We ended up contributing the most out of any large agency in the Greater Tennessee Valley, which is our CFC zone,” Richardson said, adding the win came as a surprise given some of the obstacles they faced.

Those obstacles included inflation and economic concerns among potential donors, balancing virtual and in-person campaigning after the pandemic, and it being the first time Richardson and many of her co-campaigners had served as CFC leaders at Marshall.

Looking back on it now, she said, there were certainly some lessons learned. Richardson said she’s optimistic for the 2023 campaign, which will be chaired by Angela Lovelady, a lead budget analyst at Marshall.

“Angela is a step above,” Richardson said. “She has an intense passion and heart for it, and I think she’ll be a great lead for CFC.”

Marshall team members raised more funds than any other large federal agency in the Greater Tennessee Valley Zone during the 2022 Combined Federal Campaign. Overseen by the Office of Personnel Management, CFC is the official workplace giving campaign for federal employees, contractors, and retirees.
Marshall team members raised more funds than any other large federal agency in the Greater Tennessee Valley Zone during the 2022 Combined Federal Campaign. Overseen by the Office of Personnel Management, CFC is the official workplace giving campaign for federal employees, contractors, and retirees.
NASA

Marshall team members who wish to match that enthusiasm will have plenty of ways to do so when the 2023 campaign kicks off Oct. 17. Donors can contribute financially via credit or debit card payment or PayPal, with some team members able to donate a portion of their paycheck during the campaign period. Donors can also contribute their time at a participating charity, with each volunteer hour counted toward the overall fundraising goal.

All campaigns start after Sept. 1 and end before mid-January of the following year. Each donation must be designated for a specific participating charity. In the Greater Tennessee Valley Zone, there are 69 charities currently listed as active CFC participants, from community health clinics and animal rescues to veteran and social justice groups.

By participating in CFC each year, Marshall can show its support to the people all over the world, including the millions of U.S. taxpayers who make NASA’s mission possible, Richardson said.

“We benefit so much as federal employees from taxpayers,” she said. “Some people will never get the opportunity to come through Gate 9 or see a launch or understand what we do, but we wouldn’t be able to do the job we are doing without them.”

Learn more about CFC and see the list of participating charities in your community by visiting https://cfcgiving.opm.gov.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Ceremony Marks Opening of NASA Educational Display at New Orleans Airport

Representatives from NASA’s Michoud Assembly Facility joined elected officials and other community leaders for a ribbon-cutting ceremony marking the opening of a NASA educational display Sept. 26 at Louis Armstrong International Airport in New Orleans.

From left, New Orleans Airport Director Kevin Dolliole, New Orleans Director of Economic Development Jeff Schwartz, Space Launch System Stages Element Office Resident Management Office Manager Gregg Eldridge, Congressman Carter’s District Director Demetric Mercadel, Michoud Director Lonnie Dutreix, New Orleans Mayor LaToya Cantrell, Judge Michael Bagneris, New Orleans & Co. Executive Vice-President Alice Glenn, New Orleans Business Alliance Interim President Louis David, and GNO Inc. Senior Vice-President of Business Development Josh Fleig cut the ribbon at the NASA educational display ribbon-cutting ceremony at Louis Armstrong International Airport in New Orleans.
From left,  New Orleans Airport Director Kevin Dolliole, New Orleans Director of Economic Development Jeff Schwartz, Space Launch System Stages Element Office Resident Management Office Manager Gregg Eldridge, Congressman Carter’s District Director Demetric Mercadel, Michoud Director Lonnie Dutreix, New Orleans Mayor LaToya Cantrell, Judge Michael Bagneris, New Orleans & Co. Executive Vice-President Alice Glenn, New Orleans Business Alliance Interim President Louis David, and GNO Inc. Senior Vice-President of Business Development Josh Fleig cut the ribbon at the NASA educational display ribbon-cutting ceremony at Louis Armstrong International Airport in New Orleans.
NASA/Michael DeMocker

The exhibit is a collaboration between NASA, the city of New Orleans, and regional economic development organizations to educate visitors on the role Michoud has played in the production of manned spacecraft and Michoud’s impact on economic development for the region. The exhibit is located near the airport’s baggage claim on the first floor. 

Michoud serves as America’s “rocket factory,” manufacturing and assembling NASA’s SLS (Space Launch System) core stages and Exploration Upper Stage, and the Orion crew module. Michoud is managed by NASA’s Marshall Space Flight Center.

› Back to Top

Start Your Engines: NASA to Begin Critical Testing for Future Artemis Missions

NASA will begin a new RS-25 test series Oct. 5, the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond.

A series of 12 tests stretching into 2024 is scheduled to occur on the Fred Haise Test Stand at NASA’s Stennis Space Center. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V.

RS-25 developmental engine E0525 arrives at the Fred Haise Test Stand at NASA’s Stennis Space Center
Crews bring RS-25 developmental engine E0525 to the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30 for the upcoming certification test series. The first test of the 12-test series is Oct. 5 at Stennis.
NASA / Danny Nowlin

NASA and our industry partners continue to make steady progress toward restarting production of the RS-25 engines for the first time since the space shuttle era as we prepare for our more ambitious missions to deep space under Artemis with the SLS rocket,” said Johnny Heflin, liquid engines manager for SLS at NASA’s Marshall Space Flight Center. “The upcoming fall test series builds off previous hot fire testing already conducted at NASA Stennis to help certify a new design that will make this storied spaceflight engine even more powerful.”

For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket, producing more than 8.8 million pounds of thrust at liftoff. Following a “test like you fly” approach, all 12 tests in the new series are scheduled for at least 500 seconds, the same amount of time the engines must fire during an actual launch.

The 12-test series will use developmental engine E0525 to collect data for the final RS-25 design certification review. The engine features a second set of new key components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June.

“Testing a second set of hardware during this next phase of our certification test series will give us repeatability to ensure we have sound processes for building our new engines,” said Mike Lauer, RS-25 deputy program manager at Aerojet Rocketdyne. “The successful testing of the brand-new certification engine proved our engineering was sound – that the new design is capable of meeting requirements at operating extremes and durations. This next test series will help confirm our manufacturing processes will reliably create production engines that will meet these same requirements.”

Operators will fire the engine at power levels varying between 80% and 113% to test performance in multiple scenarios. The first four Artemis missions are using modified space shuttle main engines that can power up to 109% of their rated level. New RS-25 engines will power up to the 111% level to provide additional thrust. Testing up to the 113% power level provides a margin of operational safety.

The longest test of the new series is planned for 650 seconds. Crews will conduct a gimbal test of the engine to ensure it can pivot as needed to help SLS maintain stability and trajectory during flight. The Oct. 5 test is scheduled for 550 seconds and will fire the RS-25 engine up to 111% power level.

Overall, a total of 6,350 seconds of hot fire is planned for the series. With completion of the campaign, it is anticipated all systems will be “go” to produce 24 new RS-25 engines using the updated design for missions beginning with Artemis V.

“Testing at the historic Fred Haise Test Stand is critical to ensure that our astronauts fly safely,” said Chip Ellis, project manager for RS-25 testing at NASA Stennis. “The test team takes great care to ensure these engines will operate as designed to launch NASA payloads and astronauts to the Moon and beyond.”

Through Artemis, NASA will use innovative technologies and collaborate with commercial and international partners to explore more of the Moon than ever. The agency will use what is learned on and around the Moon to take the next giant leap of sending the first astronauts to Mars.

Marshall manages the SLS Program.

› Back to Top

Chandra Rewinds Story of Great Eruption of the 1840s

A new movie made from over two decades of data from NASA’s Chandra X-ray Observatory shows a famous star system changing with time. Eta Carinae contains two massive stars (one is about 90 times the mass of the Sun and the other is believed to be about 30 times the Sun’s mass).

In the middle of the 19th century, skywatchers observed as Eta Carinae experienced a huge explosion that was dubbed the “Great Eruption.” During this event, Eta Carinae ejected between 10 and 45 times the mass of the Sun. This material became a dense pair of spherical clouds of gas, now called the Homunculus nebula, on opposite sides of the two stars. The Homunculus is clearly seen in a composite image of the Chandra data with optical light from the Hubble Space Telescope (blue, purple, and white).

A faint X-ray shell of the Eta Carinae system is highlighted in this graphic showing the summed image. The image on the left emphasizes the bright X-ray ring, and the image on the right shows the same data but emphasizing the faintest X-rays.
A summed image generated by adding data together reveal important hints about Eta Carinae’s volatile history. This includes the rapid expansion of the ring, and a previously unknown faint shell of X-rays outside it. The image on the left emphasizes the bright X-ray ring, and the image on the right shows the same data but emphasizing the faintest X-rays.
(NASA/SAO/GSFC/M. Corcoran et al.)

A new time-lapse sequence contains frames of Eta Carinae taken with Chandra from 1999, 2003, 2009, 2014, and 2020. Astronomers used the Chandra observations along with data from ESA’s XMM-Newton to watch as the stellar eruption from about 180 years ago continues to expand into space at speeds up to 4.5 million miles per hour. The two massive stars produce the blue, relatively high energy X-ray source in the center of the ring. They are too close to each other to be seen individually.

A bright ring of X-rays (orange) around the Homunculus nebula was discovered about 50 years ago and studied in previous Chandra work. The new movie of Chandra, plus a deep, summed image generated by adding the data together, reveal important hints about Eta Carinae’s volatile history. This includes the rapid expansion of the ring, and a previously unknown faint shell of X-rays outside it.

This faint X-ray shell is highlighted in an additional graphic showing the summed image. The image on the left emphasizes the bright X-ray ring, and the image on the right shows the same data but emphasizing the faintest X-rays. The shell is located in between the two contour levels, as labeled.

A time-lapse sequence of Eta Carinae allows astronomers to watch as the stellar eruption continues to expand into space at speeds up to 4.5 million miles per hour. Credits: Credits: X-ray: NASA/SAO/GSFC/M. Corcoran et al; HST: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare, J. Major, N. Wolk)

Because the newly discovered outer X-ray shell has a similar shape and orientation to the Homunculus nebula, researchers concluded both structures have a common origin. The idea is that material was blasted away from Eta Carinae well before the 1843 Great Eruption – sometime between 1200 and 1800, based on the motion of clumps of gas previously seen in Hubble Space Telescope data. Later this slower material was lit up in X-rays when the fast blast wave from the Great Eruption tore through space, colliding with and heating the material to millions of degrees to create the bright X-ray ring. The blast wave has now traveled beyond the bright ring.

A paper describing these results appeared in The Astrophysical Journal. The authors of the paper are Michael Corcoran (NASA’s Goddard Space Flight Center), Kenji Hamaguchi (GSFC), Nathan Smith (University of Arizona), Ian Stevens (University of Birmingham, UK), Anthony Moffat (University of Montreal), Noel Richardson (Embry-Riddle Aeronautical University), Gerd Weigelt (Max Planck Institute for Radio Astronomy), David Espinoza-Galeas (The Catholic University of America), Augusto Damineli (University of Sao Paolo, Brazil), and Christopher Russell (Catholic University).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

OSIRIS-REx Landing Highlighted on ‘This Week at NASA’

On Sept. 24, the OSIRIS-REx sample return capsule – with samples of rock and dust from asteroid Bennu – made its historic return to Earth, marking the end of NASA’s first sample return mission. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

The next day, the sample return capsule was flown to NASA’s Johnson Space Center, where the sample material inside it will be cared for, stored, and shared with scientists around the world.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington. Read more about Marshall’s role in OSIRIS-REx.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

New Horizons to Continue Exploring Outer Solar System

NASA has announced an updated plan to continue New Horizons’ mission of exploration of the outer solar system. 

Beginning in fiscal year 2025, New Horizons will focus on gathering unique heliophysics data, which can be readily obtained during an extended, low-activity mode of operations. 

While the science community is not currently aware of any reachable Kuiper Belt object, this new path allows for the possibility of using the spacecraft for a future close flyby of such an object, should one be identified. It also will enable the spacecraft to preserve fuel and reduce operational complexity while a search is conducted for a compelling flyby candidate. 

New Horizons in space
Launched on Jan. 18, 2006, NASA’s New Horizons spacecraft has helped scientists understand worlds at the edge of our solar system by visiting the dwarf planet Pluto (its primary mission) and other observations.
(NASA)

“The New Horizons mission has a unique position in our solar system to answer important questions about our heliosphere and provide extraordinary opportunities for multidisciplinary science for NASA and the scientific community,” said Nicola Fox, associate administrator for NASA’s Science Mission Directorate. “The agency decided that it was best to extend operations for New Horizons until the spacecraft exits the Kuiper Belt, which is expected in 2028 through 2029.” 

This new, extended mission will be primarily funded by NASA’s Planetary Science Division and jointly managed by NASA’s Heliophysics and Planetary Science Divisions.

NASA will assess the budget impact of continuing the New Horizons mission so far beyond its original plan of exploration. As a starting point, funding within the New Frontiers program (including science research and data analysis) will be rebalanced to accommodate extended New Horizons operations, and future projects may be impacted.

Launched on Jan. 18, 2006, NASA’s New Horizons spacecraft has helped scientists understand worlds at the edge of our solar system by visiting the dwarf planet Pluto (its primary mission) and then venturing farther out for a flyby of the Kuiper belt object Arrokoth, a double-lobed relic of the formation of our solar system, and other more remote observations of similar bodies.  

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft, and manages the mission for NASA’s Science Mission Directorate. NASA’s Marshall Space Flight Center Planetary Management Office provides agency oversight for the New Horizons. Southwest Research Institute, based in San Antonio, directs the mission via Principal Investigator Stern, and leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by Marshall.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE Star Gazing - 24th/25th Februay
    • By NASA
      6 Min Read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960.
      What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space Telescope, Chandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I.
      NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.NASA/Bill Ingalls Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline.
      “The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own.
      The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable.
      Joseph Pelfrey
      Marshall Space Flight Center Director
      “Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.”
      Reflecting on Marshall history
      Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969.
      “Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.”
      The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.NASA “Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming. 
      Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory. 
      “That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003.
      “We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center. 
      We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century.
      Willie Weaver
      Former Marshall Space Flight Center Employee
      The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program.
      Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets. 
      This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.NASA “We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.”
      Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program. 
      “Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.” 
      Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. NASA Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight.
      Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride. 
      “It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said. 
      Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. NASA That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer.
      As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.”
      “Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.”
      Read more about Marshall and its 65-year history:
      https://www.nasa.gov/marshall
      Hannah Maginot
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      hannah.l.maginot@nasa.gov  
      Share
      Details
      Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
      Article 2 weeks ago 5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Legacy to Horizon: Marshall 65
      Marshall Space Flight Center Missions
      Marshall Space Flight Center
      Marshall Space Flight Center History
      View the full article
    • By Amazing Space
      LIVE Star Gazing - 25th/26th January
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, NASA astronauts, Tracy C. Dyson, Mike Barratt, Matthew Dominick, and Jeanette Epps, who served as part of Expedition 71, will discuss their recent missions to the International Space Station during a visit to Marshall Space Flight Center on Jan. 29. NASA NASA will host four astronauts at 9 a.m. CDT Wednesday, Jan. 29, for a media opportunity at the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA astronauts Matt Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson served as part of Expedition 71 and will discuss their recent missions to the International Space Station.
      Dominick, Barratt, and Epps launched aboard NASA’s SpaceX Crew-8 mission in March 2024 and returned to Earth in October 2024 after spending nearly eight months aboard the orbiting complex. Dyson launched aboard a Roscosmos Soyuz spacecraft also in March 2024 and returned in September 2024 after completing a six-month research mission aboard the space station.
      Media are invited to attend the event and visit with the astronauts as they discuss their science missions aboard the microgravity laboratory and other mission highlights. Media interested in participating must confirm their attendance by 12 p.m., Monday, Jan. 27, to both Lance D. Davis – lance.d.davis@nasa.gov – and Joel Wallace – joel.w.wallace@nasa.gov –  in Marshall’s Office of Communications. 
      Media must arrive by 8 a.m., Wednesday, to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange on Research Park Boulevard. The event will take place in the NASA Marshall Activities Building 4316. Vehicles are subject to a security search at the gate, so please allow extra time. All members of the media and drivers will need photo identification. Drivers will need proof of insurance if requested.
      The Expedition 71 crew conducted hundreds of technology demonstrations and science experiments, including the bioprinting of human tissues. These higher-quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at  neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provided a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.
      As part of Crew-8, Dominick served as commander, Barratt served as pilot, and Epps served as a mission specialist. Dyson launched aboard a Soyuz space as part of an international crew and served as a flight engineer on a six-month research mission. The expedition to the space station was the first spaceflight for Dominick, third for Barratt, first for Epps, and third for Dyson.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human 
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala.
      256-640-9065
      lance.d.davis@nasa.gov
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Ala.
      256-786-0117
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 EditorBeth Ridgeway Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 1 week ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The official Expedition 71 crew portrait with (bottom row from left) Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Mike Barratt, Matthew Dominick, and Jeanette Epps. In the back row (from left) are, NASA astronaut Tracy C. Dyson and Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko. Four of the crew members – Dominick, Barratt, Epps, and Dyson – will discuss their recent missions to the International Space Station during a visit at NASA’s Marshall Space Flight Center on Jan 29.NASA NASA will host four astronauts at 9 a.m. CDT Wednesday, Jan. 29, for a media opportunity at the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA astronauts Matt Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson served as part of Expedition 71 and will discuss their recent missions to the International Space Station.
      Dominick, Barratt, and Epps launched aboard NASA’s SpaceX Crew-8 mission in March 2024 and returned to Earth in October 2024 after spending nearly eight months aboard the orbiting complex. Dyson launched aboard a Roscosmos Soyuz spacecraft also in March 2024 and returned in September 2024 after completing a six-month research mission aboard the space station.
      Media are invited to attend the event and visit with the astronauts as they discuss their science missions aboard the microgravity laboratory and other mission highlights. Media interested in participating must confirm their attendance by 12 p.m., Monday, Jan. 27, to Joel Wallace in Marshall’s Office of Communications at joel.w.wallace@nasa.gov or 256-786-0117.
      Media must arrive by 8 a.m., Wednesday, to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange on Research Park Boulevard. The event will take place in the NASA Marshall Activities Building 4316. Vehicles are subject to a security search at the gate, so please allow extra time. All members of the media and drivers will need photo identification. Drivers will need proof of insurance if requested.
      The Expedition 71 crew conducted hundreds of technology demonstrations and science experiments, including the bioprinting of human tissues. These higher-quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at  neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provided a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.
      As part of Crew-8, Dominick served as commander, Barratt served as pilot, and Epps served as a mission specialist. Dyson launched aboard a Soyuz space as part of an international crew and served as a flight engineer on a six-month research mission. The expedition to the space station was the first spaceflight for Dominick, third for Barratt, first for Epps, and third for Dyson.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 1 week ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...