Members Can Post Anonymously On This Site
Journey to a Metal-Rich World: NASA’s Psyche Is Ready to Launch
-
Similar Topics
-
By NASA
2 Min Read Why NASA Is a Great Place to Launch Your Career
Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career.
“NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.”
NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact.
Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.
“My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement.
If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.
To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/
Keep Exploring Discover More STEM Topics From NASA
For Colleges and Universities
For Students Grades 9-12
Join Artemis
Learning Resources
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before.
The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below.
“Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study.
Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
“Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun.
The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
Irina Kitiashvili
NASA Scientist
“The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data.
NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit:
https://www.nas.nasa.gov/sc24
For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Share
Details
Last Updated Nov 21, 2024 Related Terms
General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
Article 24 hours ago Keep Exploring Discover More Topics From NASA
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Solar Storms and Flares
Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
Solar System
Track the Solar Cycle with Sunspots
Participate in sunspot-counting activities using NASA telescopes or your own.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
SWIM Practice
The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
“It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
Swarm Science
A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
More About SWIM
Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2024-162
Share
Details
Last Updated Nov 20, 2024 Related Terms
Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology
Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge
Article 23 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:04:31 The double-satellite Proba-3 is the most ambitious member yet of ESA’s Proba family of experimental missions. Two spacecraft will fly together as one, maintaining precise formation down to a single millimetre. One will block out the fiery disc of the Sun for the other, to enable prolonged observations of the Sun’s surrounding atmosphere, or ‘corona’, the source of the solar wind and space weather. Usually, the corona can only be glimpsed for a few minutes during terrestrial total solar eclipses. Proba-3 aims to reproduce such eclipses for up to six hours at a time, in a highly elliptical orbit taking it more than 60 000 km from Earth. The two spacecraft are being launched together by India’s PSLV-XL launcher from the Satish Dhawan Space Centre. Follow the mission’s deployment and commissioning, up to its first glimpse of the corona, in this overview video.
View the full article
-
By NASA
The unpiloted Roscosmos Progress spacecraft pictured on Feb. 7, 2023, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering nearly three tons of food, fuel, and supplies to the Expedition 72 crew aboard the International Space Station.
The unpiloted Progress 90 spacecraft is scheduled to launch at 7:22 a.m. EST (5:22 p.m. Baikonur time) Thursday, Nov. 21, on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
Live launch coverage will begin at 7 a.m. on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 9:35 a.m., Saturday, Nov. 23. NASA’s coverage of rendezvous and docking will begin at 8:45 a.m. on NASA+ and the agency’s website.
The Progress 88 spacecraft will undock from the Poisk module on Tuesday, Nov. 19. NASA will not stream undocking.
The spacecraft will remain docked at the station for approximately six months before departing for a re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
Get breaking news, images and features from the space station on Instagram, Facebook, and X.
Learn more about the International Space Station, its research, and its crew, at:
https://www.nasa.gov/station
-end-
Claire O’Shea / Josh Finch
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Nov 18, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space ISS Research Johnson Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.